期刊文献+

基于图像识别的无人机输电线路绝缘子故障检测方法研究 被引量:26

Research on image recognition based insulator fault detection method for UVA transmission line
下载PDF
导出
摘要 针对绝缘子的自爆缺陷故障,基于图像识别技术,设计并实现了一套无人机输电线路绝缘子故障检测方法。该方法依次进行图像色彩转换、图像载入和预处理、OTSU或最大熵值分割法分割以及绝缘子轮廓检测工作,实现了对绝缘子间无明显重叠和有明显重叠图像的前景提取与识别功能;采用基于空间序列关系建立的特征检测算法,实现对图像中部无明显重叠绝缘子的自爆缺陷故障检测和定位工作。经测试,自爆缺陷故障检测和定位准确率较高,速度较快,具有一定的应用价值,并能为类似绝缘子故障的检测研究提供参考。 Aiming at the fault caused by spontaneous explosion defect of the insulator,an insulator fault detection method for transmission line of unmanned aerial vehicle(UVA)was designed and implemented based on the image recognition technology.The operations of image color conversion,image loading and pretreatment,OTSU or segmentation with maximum entropy segmentation method,and insulator contour detection are performed in the method successively to realize the foreground extraction and recognition functions of the images with unobvious overlap and obvious overlap in the intervals of the insulators.The feature detection algorithm established on the basis of the spatial series relation is used to realize the spontaneous explosion defect′s fault detection and location for the insulators without obvious overlap in the image.The test results show that the method has high accuracy and fast speed of the fault detection and location for the spontaneous explosion defect,which has a certain application value,and can provide a reference for the detection and research of the similar insulator faults.
出处 《现代电子技术》 北大核心 2017年第22期179-181,186,共4页 Modern Electronics Technique
关键词 图像识别 无人机 输电线路 绝缘子故障检测 image recognition unmanned aerial vehicle transmission line insulator fault detection
  • 相关文献

参考文献5

二级参考文献22

  • 1WHITWORTH C C, DULLER A W G, JONES D I, et al. Aerial video inspection of overhead power lines[J]. Power Engineering Journal, 2001, 2: 25-32. 被引量:1
  • 2KITTLER J, ILLINGWORTHV I. Minimum error thresholding [J]. Pattern Recognition, 1986, 19( 1 ) :4147. 被引量:1
  • 3CHO S, HARALICK R, YI S . Improvement of Kitder and Illingworth's minimum error thresholding [J]. Pattern Recognition, 1989, 22(5) : 609-617. 被引量:1
  • 4OSTU N. A threshold selection method from gray-level histogram[J]. IEEE Transactions on System Man and Cybemet 1978,8( 1 ) : 62-66. 被引量:1
  • 5OSTU N. A threshold selection method from gray level histograms [J]. IEEE Transactions System Man and Cybernetics, 1997, 9( 1 ): 62-66. 被引量:1
  • 6BEUCHER S, LANTUEJOUL C. Use of watersheds in contour detection [C]// Proc International Workshop on Image Processing, CCETY/IRISA-Rennes, France, 1979: 17-21. 被引量:1
  • 7VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598. 被引量:1
  • 8SMET P D, PIRES R L. Implementation and analysis of an optimized rain falling watershed algorithm [C]//Proc of SPIE' 00. San Diego, USA, 2000: 759-766. 被引量:1
  • 9YEN Juicheng, CHANG Fujuay, CHANG Shyang. A new criterion for automatic multilevel thresholding [J]. IEEE Transactions on Image Processing, 1995, 4(3): 370-377. 被引量:1
  • 10I.Ituen,G.Sohn,and A.Jenkins.A case study:workflowlanalysis of powerline systems for risk management[J].The Imernation Archives ofthe Photogrammetry,Remote Sensingand Spatial.Information Sciences,2008,37(3):331-336. 被引量:1

共引文献67

同被引文献233

引证文献26

二级引证文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部