期刊文献+

正交Hermite-Padé表中沿对角递推公式

Diagonal recursive formula on orthogonal Hermite-Padé table
下载PDF
导出
摘要 文章首先建立了正交多项式序列中任意两项乘积的公式,然后在正规性条件下,在s维正交H-P(Hermite-Padé)表中沿对角线递推地构造正交H-P多项式序列,解决了正交H-P多项式的计算问题,并给出了余项估计式。 The product formula of any two polynomials in an orthogonal polynomial sequence is first es- tablished. Under the condition of regularity, the orthogonal Hermite-Pade(H-P) form sequences are recursively constructed along the diagonal in the s-dimensional orthogonal H-P table. This solves the calculation problem of orthogonal H-P table. And the corresponding remainder estimation formula is given.
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第10期1437-1440,共4页 Journal of Hefei University of Technology:Natural Science
基金 安徽省省级质量工程专业综合改革试点资助项目(2012zy007) 名师工作室资助项目(2015msgzs126)
关键词 正交多项式 唯一性 Hermite-Pade逼近 Hermite-Pade表 对角递推公式 orthogonal polynomial uniqueness Hermite-Pade approximation Hermite-Pade table di-agonal reeursive forrfiula
  • 相关文献

参考文献6

二级参考文献26

  • 1陶长虹.Chebyshev二次Padé逼近[J].合肥工业大学学报(自然科学版),2005,28(4):438-440. 被引量:2
  • 2罗兴钧,杨素华,陈仲英.近似已知函数的求导方法[J].高等学校计算数学学报,2006,28(1):76-82. 被引量:8
  • 3Baker G A ,Jr. Convergence theorems for rows of differential and algebraic Hermite Pade approximation [J] . J Comput Appl Math, 1987,18: 29-52. 被引量:1
  • 4Paszkowski S. Hermite Pade approximation(basic notions and theorems) [J]. J Comput Appl Math, 1990, 32: 229-236. 被引量:1
  • 5徐献瑜,李家楷,徐国良.Pade逼近概论[M].上海:上海科学技术出版社,1980.248-289. 被引量:1
  • 6Paszkowski S. Recurrence relations in Hermite Pade approximation[J]. J Comput Appl Math , 1987,19 : 99-107. 被引量:1
  • 7切尼EW.逼近论导引[M].上海:上海科学技术出版社,1981.27—69. 被引量:3
  • 8徐献瑜,李家楷,徐国良.Padé逼近概论[M].上海:上海科学技术出版社,1980:248-289. 被引量:1
  • 9Paszkowski S.Recurrence relations in Hermite-Padé approximation[J].J.Comput.appl.Math.,1987,19(11):99-107. 被引量:1
  • 10Baker,Jr G A.Convergence theorems for rows of differential and algebraic Hermite-Padé approximation[J].J.Comput.appl.Math.,1987,18(6):29-52. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部