期刊文献+

考虑尺度依赖的平面正交各向异性功能梯度微梁的自由振动分析 被引量:6

Size-dependent free vibration analysis of plane orthotropic functionally graded micro-beams
原文传递
导出
摘要 基于一种新修正偶应力理论建立了微尺度平面正交各向异性功能梯度梁的自由振动模型。模型中包含两个材料尺度参数,能够分别描述两个正交方向上不同程度的尺度效应。当梁的几何尺寸远大于材料尺度参数时,本文模型亦可自动退化为相应的传统宏观模型。基于哈密顿原理推导了运动控制方程并以简支梁的自由振动为例分析了几何尺寸、功能梯度变化指数等对尺度效应产生的影响。算例结果表明:采用本文模型所预测的梁自振频率总是大于传统理论的结果,即捕捉到了尺度效应。尺度效应会随着梁几何尺寸的增大而逐渐减弱并在几何尺寸远大于尺度参数时消失;高阶自振频率所体现出的尺度效应较低阶自振频率更加明显。此外,功能梯度变化指数对尺度效应也有一定的影响。 A size-dependent model for the free vibration of plane orthotropic functionally graded micro-beams was developed on the basis of a new modified couple stress theory. The model contains two material length scale parame- ters, which enables it to separately represent the different scale effects in two orthogonal directions. The present model can be degenerated to classical macroscopic model when the geometrical size of the beam is much larger than the material length parameter. The governing equations were derived through Hamilton's principle. A simply sup- ported micro-beam was taken as the illustrative example and analytical solved. The influences of geometrical size and power law index on the scale effects were analyzed. Numerical results indicate that the natural frequencies of the mi- cro-beam predicted by the present model are always greater than those predicted by the classical FG beam model, i.e. the scale effects are captured. The scale effects will be gradually weaken with the increasing of the geometrical size of the beam, and diminish when the geometrical size is much larger than the material length parameter. The scale effects reflected by higher order natural frequencies are more apparent than that reflected by lower order natu- ral frequencies. In addition, the power law index also has a specific influence on the scale effects.
作者 杨子豪 贺丹
出处 《复合材料学报》 EI CAS CSCD 北大核心 2017年第10期2375-2384,共10页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(11572204 11572081)
关键词 修正偶应力理论 功能梯度材料 尺度效应 材料尺度参数 自由振动 modified couple stress theory functionally graded materials scale effects material length parameter free vibration
  • 相关文献

参考文献3

二级参考文献60

  • 1Fleck N A, Muller G M, Ashby M F, Hutchinson J W.Strain gradient plasticity: Theory and experiment [J].Acta Metallurgica et Materialia, 1994, 42(2): 475-487. 被引量:1
  • 2Stolken J S, Evans A G. A microbend test method formeasuring the plasticity length-scale [J]. Acta Materialia,1998,46(14): 5109-5115. 被引量:1
  • 3Toupin R A. Elastic materials with couple stresses [J].Archive for Rational Mechanics and Analysis, 1962, 11:385-414. 被引量:1
  • 4Koiter W T. Couple stresses in the theory of elasticity I &II[J]. Proceedings of the Koninklijke NederlandseAkademie van Wetenschappen, 1964, 67: 17-44. 被引量:1
  • 5Mindlin R D. Influence of couple-stresses on stressconcentrations [J]. Experimental Mechanics, 1963,3:1-7. 被引量:1
  • 6Neuber H. On the general solution of linear-elasticproblems in isotropic and anisotropic Cosserat continua[C]// Gortler M, ed. Proceedings of the 11th InternationalCongress on Applied Mechanics. Springer, 1965: 153 -158. 被引量:1
  • 7Fleck N A, Hutchinson J W. A phenomenological theoryfor strain gradient effects in plasticity [J]. Journal of theMechanics and Physics of Solids, 1993,41: 1825 - 1857. 被引量:1
  • 8Yang F,Chong A M,Lam D C C,Tong P. Couple stressbased strain gradient theory for elasticity [J].International Journal of Solids and Structures, 2002, 39:2731-2743. 被引量:1
  • 9Anthoine A. Effect of couple-stresses on the elasticbending of beams [J]. International Journal of Solids andStructures, 2000, 37: 1003 - 1018. 被引量:1
  • 10Papargyri B S, Tsepoura K Q Polyzos D, Beskos D E.Bending and stability analysis of gradient elastic beams[J]. International Journal of Solids and Structures, 2003,40: 385-400. 被引量:1

共引文献17

同被引文献37

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部