期刊文献+

非完整分数阶奇异系统的Lie对称性和守恒量研究

Lie Symmetries and Conserved Quantities of the Nonholonomic Fractional Singular System
下载PDF
导出
摘要 在位形空间中研究分数阶奇异系统的Lie对称性及其守恒量。给出分数因子法的分数阶导数定义,利用微分变分原理和Routh方法推导出外含Chetaev型非完整约束的奇异保守系统的运动微分方程;进一步研究在无限小群变换下系统Lie对称性的确定方程、限制方程和附加限制方程;根据对称性与守恒量之间的联系,构造规范生成函数满足的结构方程,进而得到一阶非完整分数阶奇异系统守恒量形式;最后举例说明方法的应用。结果表明,在外在非完整约束与奇异性导致的内在约束相容性基础上,利用分数因子法研究奇异系统得到的有关结论与经典整数阶约束力学系统具有高度的自然一致性,且简便和准确。 This paper studies Lie symmetries and conserved quantities of fractional singular systems in a square space, and gives a fractional derivative definition of fractional factor method. The differential equa-tions of motion for a singular conservative system with Chetaev type nonholonomic constraints are derived by using the differential variational principle and the Routh method. Furthermore, the determination equa-tions, the Limiting Equations and the additional Limiting Equations for the Lie symmetry of the system are studied under the infinitesimal group transformation. According to the relation between symmetry and ener-gy conservation, this paper constructs the structure equation generating functions, and then gets the energy conservation form of the nonholonomic fractional singular systems. Finally, an example is given to illustrate the application of the method. The results show that based on the internal constraint compatibility caused by the external nonholonomic constraints and singularity, relevant conclusions and the classical integer or-der constrained mechanical system obtained by fractional factor method of singular systems are of high nat-ural consistency, convenience and accuracy.
作者 郑明亮
出处 《南通职业大学学报》 2017年第3期55-59,共5页 Journal of Nantong Vocational University
基金 国家自然科学基金项目(11472247)
关键词 分数因子 奇异系统 非完整 LIE对称 守恒量 fractional factor singular system nonholonomic Lie symmetry conserved quantity
  • 相关文献

参考文献6

二级参考文献91

  • 1FU JingLi1,LI XiaoWei2,LI ChaoRong1,ZHAO WeiJia3 & CHEN BenYong4 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China,2 Department of Physics,Shangqiu Normal University,Shangqiu 476000,China,3 Department of Mathematics,Qingdao University,Qingdao 266071,China,4 Faculty of Mechanical Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China.Symmetries and exact solutions of discrete nonconservative systems[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1699-1706. 被引量:3
  • 2FU JingLi1, CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China,2 Department of Mechanics, Shanghai University, Shanghai 200072, China,3 Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):545-554. 被引量:11
  • 3郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011. 被引量:25
  • 4] Podlubny I 1999 Fractional Differential Equations (San Diego CA: Academic Press). 被引量:1
  • 5Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: John Wiley & Sons, Inc.). 被引量:1
  • 6Hilf R 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific Publishing Company). 被引量:1
  • 7Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives--Theory and Applications (Linghome, PA: Gordon and Breach). 被引量:1
  • 8Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Appli- cations of Fractional Differential Equations (Amsterdam: Elsevier B V). 被引量:1
  • 9Tarasov V E 2010 Fractional Dynamics (Beijing: Higher Education Press). 被引量:1
  • 10Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic Press). 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部