期刊文献+

总体最小二乘拟合的盖氏圆盘信源数估计法 被引量:7

Gerschgorin Disks Based on Total Least Squares for Source Number Estimation
下载PDF
导出
摘要 针对调整因子设置不当造成在信源数估计时盖氏圆盘法(Gerschgorin Disks Estimation,GDE)性能下降的问题,提出一种基于总体最小二乘拟合的盖氏圆盘法(Total Least Squares-Gerschgorin Disks Estimation,TLS-GDE)。该方法以圆盘半径作为拟合点进行直线拟合,若拟合点含信号圆盘半径,则拟合偏差较大,利用这一特性制定了比值阶跃准则,进行信源数判决,解决了盖氏圆盘法对调整因子依赖的问题。最后,仿真结果表明,该方法鲁棒性较好,在低信噪比下性能要优于GDE算法,更具有实用价值。 Aiming at the problem that the performance of the Gerschgorin disks method was degraded when the adjustment factor was set improperly in source number estimation,this paper proposed a modified Gerschgorin disks method based on total least squares fitting. This method kept the radius of the disk as the fitting points of straight line so that the fitting discrepancy of the signal disk radius was much larger than that of the noise disk radius,and a ratio-step criterion was developed to estimate the source number so that no artificial adjustment factor was set. The performance of the TLS-GDE algorithm was verified by simulation. The results show that the robustness of the TLS-GDE is improved and the performance of the TLS-GDE is better than that of the GDE in low SNR.
机构地区 电子工程学院
出处 《信号处理》 CSCD 北大核心 2017年第10期1332-1337,共6页 Journal of Signal Processing
基金 安徽省自然科学基金(1608085QF140)
关键词 信源数估计 盖氏圆盘法 总体最小二乘拟合 调整因子 比值阶跃准则 source number estimation gerschgorin disks method total least squares fitting adjustment factor ratio-step criterion
  • 相关文献

参考文献5

二级参考文献53

共引文献28

同被引文献36

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部