摘要
TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO2 films were investigated through SEM, TEM, X-ray diffraction analysis, Raman spectroscopy, FTIR, and XPS. The results showed that when being heat-treated at 600 ℃, the amorphous TiO_2 film transfered to the anatase film which bonded well with diamond substrate. Meanwhile, the Ti-O-C bond formed between TiO2 film and diamond substrate. When being heat-treated at 800 ℃, TiO2 film was still anatase, and partial diamond began to graphitize. The graphitizated carbon could also form the Ti-O-C bond with TiO_2 film, although TiO_2 film would tend to crack in this case.
TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO2 films were investigated through SEM, TEM, X-ray diffraction analysis, Raman spectroscopy, FTIR, and XPS. The results showed that when being heat-treated at 600 ℃, the amorphous TiO_2 film transfered to the anatase film which bonded well with diamond substrate. Meanwhile, the Ti-O-C bond formed between TiO2 film and diamond substrate. When being heat-treated at 800 ℃, TiO2 film was still anatase, and partial diamond began to graphitize. The graphitizated carbon could also form the Ti-O-C bond with TiO_2 film, although TiO_2 film would tend to crack in this case.
基金
Funded by National Natural Science Foundation of China(No.51375157)
Shanghai Aerospace Eighth Research Institute SAST Foundation(No.2015044)
the Central University Basic Scientific Research Business Expenses,State Key Laboratory of Silicate Materials for Architectures Program(No.SYSJJ2015-09)
the Hunan Province Key Laboratory of Environmental Photocatalysis Application Technology Program(No.CCSU-KF-1504)