摘要
在一些经典效应代数上引入了拓扑结构,使其成为拓扑效应代数,证明了两个拓扑效应代数的直和仍是拓扑效应代数,拓扑效应代数的模糊集系统仍是拓扑效应代数。给出了拓扑效应代数上连续映射的定义,并研究了拓扑效应代数上态射(单调态射、同构)的连续性,证明了从一个拓扑效应代数到另一个拓扑效应代数的全体连续映射之集仍是拓扑效应代数。
Topological structure is introduced on some classic effect algebras, and so the effect algebras become topological effect algebras. We prove that the direct sum of two topological effect algebras is still topological effect algebra, and the fuzzy system of topological effect algebra is still topological effect algebra. Continious map between topological effect algebras are given, and the continuity of morphisms, monomorphisms and isomorphic are discussed. Finally, it is proved that the set of all continious maps from a topological effect algebra to another is also a topological effect algebra.
作者
张巧卫
郭志华
曹怀信
ZHANG Qiao-wei GUO Zhi-hua CAO Huai-xin(Department of Mathematics and Statistics, Yulin University, Yulin 719000, Shaanxi, China School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第10期97-103,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11501496)
陕西省自然科学基础研究计划项目(2014JQ2-1003)
关键词
拓扑效应代数
态射
连续映射
topological effect algebras
morphism
continuous map