期刊文献+

Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy 被引量:1

Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy
原文传递
导出
摘要 The atomic force microscope has become an established research tool for imaging microorganisms with unprecedented resolution.However,its use in microbiology has been limited by the difficulty of proper bacterial immobilization.Here,we have developed a microfluidic device that solves the issue of bacterial immobilization for atomic force microscopy under physiological conditions.Our device is able to rapidly immobilize bacteria in well-defined positions and subsequently release the cells for quick sample exchange.The developed device also allows simultaneous fluorescence analysis to assess the bacterial viability during atomic force microscope imaging.We demonstrated the potential of our approach for the immobilization of rod-shaped Escherichia coli and Bacillus subtilis.Using our device,we observed buffer-dependent morphological changes of the bacterial envelope mediated by the antimicrobial peptide CM15.Our approach to bacterial immobilization makes sample preparation much simpler and more reliable,thereby accelerating atomic force microscopy studies at the single-cell level. The atomic force microscope has become an established research tool for imaging microorganisms with unprecedented resolution.However,its use in microbiology has been limited by the difficulty of proper bacterial immobilization.Here,we have developed a microfluidic device that solves the issue of bacterial immobilization for atomic force microscopy under physiological conditions.Our device is able to rapidly immobilize bacteria in well-defined positions and subsequently release the cells for quick sample exchange.The developed device also allows simultaneous fluorescence analysis to assess the bacterial viability during atomic force microscope imaging.We demonstrated the potential of our approach for the immobilization of rod-shaped Escherichia coli and Bacillus subtilis.Using our device,we observed buffer-dependent morphological changes of the bacterial envelope mediated by the antimicrobial peptide CM15.Our approach to bacterial immobilization makes sample preparation much simpler and more reliable,thereby accelerating atomic force microscopy studies at the single-cell level.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第11期3896-3908,共13页 纳米研究(英文版)
基金 This work was funded by the Swiss National Science Foundation (Nos.205321_134786, 205320_152675), and by the European Union FP7/2007-2013/ERC under Grant Agreement No. 307338-NaMic, and Eurostars E!8213.
关键词 atomic force microscope (AFM) MICROFABRICATION MICROFLUIDICS MICROBIOLOGY correlative microscopy physical immobilization atomic force microscope (AFM),microfabrication,microfluidics,microbiology,correlative microscopy,physical immobilization
分类号 O [理学]
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部