期刊文献+

基于双向激光回环检测的SLAM算法研究 被引量:3

Research of SLAM algorithm based on bidirectional laser loop closure detection
下载PDF
导出
摘要 针对移动机器人长时间运动后无法自身修正累计误差以及传统EKF(Extended Kalman Filter)算法计算复杂度大的问题,提出了一种基于双向激光进行回环检测的方法,通过有效的相似度检测算法检测出真实的回环,及时修正机器人的位姿。同时使用精确稀疏滞后滤波算法相辅,利用信息矩阵的自然稀疏性来降低计算复杂度。通过实验结果分析,上述两种方法的结合可以有效地减少移动机器人行驶过程中的累计误差。 Aiming at the problem that the mobile robot can not correct the cumulative error itself and the complexity of the traditional extended Kalman filter(EKF) algorithm,this paper proposes a method based on bidirectional laser for loop closure detection. Through the effective similarity detection algorithm,it can detect the real loop and timely correct the robot position. At the same time,we use the exactly sparse delayed state filters algorithm to supplement the natural sparsity of the information matrix to reduce the computational complexity. The experimental results show that the combination of the two methods can effectively reduce the cumulative error in the process of moving the robot.
出处 《微型机与应用》 2017年第20期19-22,共4页 Microcomputer & Its Applications
关键词 回环检测 精确稀疏滞后滤波 同时定位与地图构建 移动机器人 loop closure detection ESDF SLAM mobile robot
  • 相关文献

参考文献2

二级参考文献27

  • 1郭禾,李寒,王宇新,贾棋,刘天阳,唐骏.机器人三维定位系统中关键技术的研究[J].系统仿真学报,2006,18(z1):99-102. 被引量:6
  • 2王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 3黄庆成,洪炳熔,厉茂海,罗荣华.基于主动环形闭合约束的移动机器人分层同时定位和地图创建[J].计算机研究与发展,2007,44(4):636-642. 被引量:8
  • 4R Smith, M Self, P Cheeseman. Estimating uncertain spatial relationships in robotics [M]// I J Cox, G T Wilfon, editors, Autonomous Robot Vehicles. Germany: Springer-Verlag, 1990: 167-193. 被引量:1
  • 5S Thrun, D Koller, Z Ghahmarani, H Durrant-Whyte. SLAM updates require constant time [R]// School of Computer Science, Carnegie Mellon University, Pittsburgh, Technical Report, 2002. USA: School of Computer Science, Carnegie Mellon University, 2002. 被引量:1
  • 6S Thrun, Y Liu, D Kollcr, A Ng, Z Ghahramani, H Durrant-Whytc. Simultaneous localization and mapping with sparse extended information filters [J]. International Journal of Robotics Research (S0278-3649), 2004, 23(7-8): 693-716. 被引量:1
  • 7U Frese. A proof for the approximate sparsity of SLAM information matrices [C]// Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, April 2005. USA: IEEE, 2005. 被引量:1
  • 8M Paskin. Thin junction tree filters for simultaneous localization and mapping [C]// Proceedings of the 18th International Joint Conference on Artificial Intelligence, San Francisco, 2003. San Francisco: DCAI, 2003: 1157-1164. 被引量:1
  • 9U Frese. An O (log n) algorithm for simulateneous localization and mapping of mobile robots in indoor environments [D]. Germany: University of Erlangen-Nurnberg, 2004. 被引量:1
  • 10Y Liu S Thrun. Results for Outdoor-SLAM Using Sparse Extended Information Filters [C]//IEEE International Conference on Robotics and Automation, September 2003. USA: IEEE, 2003, 1: 1227-1233. 被引量:1

共引文献7

同被引文献10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部