期刊文献+

面向电力大数据日志分析平台的异常监测集成预测算法 被引量:8

Ensemble forecasting algorithm for anomaly detection on electric-power big data log analysis platform
下载PDF
导出
摘要 随着电力企业网络技术的发展,传统和新生的日志处理系统已不能满足大数据状态下的日志分析要求,为了实现系统日志异常分析的目标,该文提出一种基于时间序列的系统异常数量集成预测算法和面向该算法的评价体系。该算法对多种分类预测算法进行集成,对收集到的日志数据进行分类预测,进而实现了以综合最优的准确度预测系统的异常数量,评价体系很好地支持了该算法的工作,算法增强了日志分析平台的安全性。 In view of that the traditional or the new log processing system can not meet therequirements of the log analysis in the current situation of big data entirely with the development of power enterprise network technology, an algorithm for estimating the number of systems based on time series and the evaluation system are presented to realize the system for the algorithm. The algorithm integrates multiple classification prediction algorithms to classify the collected log data, and then realize the purpose of forecasting the number of anomaly systems with the best accuracy. The evaluation system also supports that the algorithm can increase the security of the log analysis platform.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第5期634-645,共12页 Journal of Nanjing University of Science and Technology
基金 国网公司科技项目 江苏省重大研发计划产业前瞻项目(BE2017100) 赛尔下一代互联网创新项目(NGII20160122)
关键词 日志分析 异常监测 大数据平台 集成预测算法 log analysis anomaly detection big data platform ensemble forecasting algorithm
  • 相关文献

参考文献5

二级参考文献12

  • 1戚湧,胡俊,於东军.基于自组织映射与概率神经网络的增量式学习算法[J].南京理工大学学报,2013,37(1):1-6. 被引量:7
  • 2Anastasia S,Dennis G.Review of the mobile malware detection approaches[C]//Proceedings of the 23rd International Conference on Parallel,Distributed and Network-Based Processing.Washington,USA:IEEE Computer Society,2015:600-603. 被引量:1
  • 3Islam R,Tian R,Batten L M,et al.Review:classification of malware based on integrated static and dynamic features[J].Journal of Network and Computer Applications,2013,36(2):646-656. 被引量:1
  • 4Mas’Ud M Z,Sahib S,Abdollah M F,et al.Analysis of features selection and machine learning classifier in Android malware detection[C]//Proceedings of IEEE International Conference on Information Science and Applications.Washington,USA:IEEE Computer Society,2014:1-5. 被引量:1
  • 5Zhou Yajin,Wang Zhi,Zhou Wu,et al.Hey,you,get off of my market:detecting malicious Apps in official and alternative Android markets[C]//Proceedings of the 19th Annual Network & Distributed System Security Symposium.Washington,USA:Internet Society,2012:123-129. 被引量:1
  • 6Zhang Yuan,Yang Min,Yang Zhemin,et al.Permission use analysis for vetting undesirable behaviors in Android Apps[J].IEEE Transactions on Information Forensics and Security,2014,9(11):1828-1842. 被引量:1
  • 7Pandita R,Xiao X,Yang W,et al.WHYPER:towards automating risk assessment of mobile applications[C]//Proceedings of the 22nd USENIX Security Symposium.Berkeley,USA:USENIX,2013:89-97. 被引量:1
  • 8Salehi Z,Ghiasi M,Sami A.A miner for malware detection based on API function calls and their arguments[C]//Proceedings of the 16th CSI International Symposium on Artificial Intelligence and Signal Processing.Washington,USA:IEEE Computer Society,2012:563-568. 被引量:1
  • 9Yerima S Y,Sezer S,Muttik I.High accuracy Android malware detection using ensemble learning[J].IET Information Security,2015,9(6):313-320. 被引量:1
  • 10杨欢,张玉清,胡予濮,刘奇旭.基于多类特征的Android应用恶意行为检测系统[J].计算机学报,2014,37(1):15-27. 被引量:89

共引文献7

同被引文献57

引证文献8

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部