期刊文献+

具有约束的稀疏正则图像重建模型及其在CT成像中的应用

Constrained sparse regularization image reconstruction model and its application in CT
下载PDF
导出
摘要 提出更具有一般性的约束稀疏正则图像重建模型,它不仅包含了各向异性和各向同性TV范数重建模型,而且可以推广到其他CT重建模型。基于Chambolle和Pock的原始对偶方法思想,借助指示函数,将原模型转化为无约束的凸优化模型,建立求解所得到优化模型的迭代算法,该算法的特点是无需内迭代以及计算矩阵逆且迭代每一步都具有显示解。进而,提出了一种自适应的原始对偶算法,将算法中固定迭代参数推广到可变参数情形。最后,将所提模型和算法应用于不完备投影CT重建问题,并与ART-POCS方法进行比较,得出我们的方法在图像重建质量等方面优于ART-POCS方法。 Amore general constrained sparse regularization image reconstruction model was proposed in this study,which not only contained the anisotropic and isotropic TV norm reconstruction model,but also can be extended to other CT reconstruction model.Based on the Chambolle and Pock primal-dual method,the indicator function was used to transform the original model into an unconstrained convex optimization model,and an iterative algorithm was establish to solve the optimization model.The inner iteration and inverse of matrix was not involved in the algorithm doesn't involve.In particular,each iteration step has an explicit solution.Furthermore,an adaptive primal-dual algorithm was also proposed,where the iterative parameters were updated automatically.Finally,the proposed model and algorithm were applied to the problem of incomplete projection CT reconstruction and compared it with ART-POCS method.It was concluded that our method was superior to ART-POCS in terms of image reconstruction quality.
作者 唐玉超 陈宝 朱传喜 TANG Yuchao CHEN Bao ZHU Chuanxi(Department of Mathematics School of Management, Nanehang University, Nanehang 330031, China)
出处 《南昌大学学报(工科版)》 CAS 2017年第3期294-306,共13页 Journal of Nanchang University(Engineering & Technology)
基金 中国科学院数学与系统科学研究院访问基金资助项目(AM201622C04) 国家自然科学基金资助项目(11401293 11461046 11661056) 江西省自然科学基金资助项目(20151BAB211010 20142BAB211016) 中国博士后科学基金资助项目(2015M571989) 江西省博士后科学基金资助项目(2015KY51)
关键词 TV范数 图像重建 ART-POCS算法 不完备投影 total variation image reconstruction ART - POCS algorithm incomplete projection
  • 相关文献

参考文献5

二级参考文献71

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部