期刊文献+

基于粒子群算法的无线信道资源分配算法研究 被引量:3

Research on Wireless Channel Resource Allocation Algorithm Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为了最大化多媒体无线信道资源分配的网络效用,提出了一种新的基于粒子群算法的信道时间分配算法。该算法能够优化分配给网络内每个设备的时间,以便为每位网络用户提供最优化的服务质量(QoS)。所提算法结合了多样性增加函数以及基于个体最优值的学习方法,并基于自适应粒子群算法进行了改进,在持续增强QoS的同时加快了收敛速度。在多达40个设备的千兆网络环境内对所提算法进行了测试。实验结果表明,提出的算法能够大大提升资源分配能力,尤其是在网络规模较大的情况下。 In order to maximize the network utility of multimedia wireless channel resource allocation,a new channel time allocation algorithm based on particle swarm optimization algorithm was proposed.The algorithm can optimize the time allocated to each device in the network so as to maximize the quality of service(QoS)for each network user.The proposed algorithm combines the diversity increasing function and the learning method based on the individual optimal value,and improves the algorithm based on adaptive particle swarm optimization algorithm.The convergence speed of the algorithm increases at the same time of the continuous enhancement of QoS.The proposed algorithm is tested in a gigabit network environment of up to 40 devices.Experimental results show that the proposed algorithm can greatly improve the resource allocation capability,especially in the case of large network size.
出处 《计算机科学》 CSCD 北大核心 2017年第10期109-112,141,共5页 Computer Science
基金 国家教育部博士点基金(20121101110037 9140A04010114BQ010xx) 国家自然科学基金(60806043)资助
关键词 无线信道 粒子群算法 资源分配 自适应QoS Wireless channel,Particle swarm optimization algorithm,Resource allocation, Adaptive QoS
  • 相关文献

参考文献11

二级参考文献115

  • 1杨轻云,孙吉贵,张居阳.最大度二元约束满足问题粒子群算法[J].计算机研究与发展,2006,43(3):436-441. 被引量:19
  • 2王建刚,王福豹,段渭军.加权最小二乘估计在无线传感器网络定位中的应用[J].计算机应用研究,2006,23(9):41-43. 被引量:50
  • 3包俊,范金慧,孙鸣,应启宏.新媒体时代的电视发展分析[J].广播与电视技术,2007,34(7):16-16. 被引量:20
  • 4FCC. Spectrum Policy Task Force Report[R]. ET Docket, No. 02-155. Nov. 2002. 被引量:1
  • 5Mitola J. Cognitive Radio:making software radios more personal[J].IEEE Personal Communications, 1999,6 ( 4 ) : 13-18. 被引量:1
  • 6Jiang H, Liu Y, Zhang X Q, et al. Design of Cognitive Radio Node Engine Based on Genetic Algorithm[C] //WASE International Conference Information Engineering ( ICIE ' 09 ). July 2009,2:22-25. 被引量:1
  • 7Ma J H, Jiang H, Hu Y C, et al. Optimal Design of Cognitive Raclio Wireless Parameters based on Non-dominated Neighbor Distribution Genetic Algorithm[C] // Eighth IEEE/ACIS International Conference Computer and Information Science (ICIS 2009). June 2009 : 97-101. 被引量:1
  • 8Rieser C J. Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and Networking[D]. Virginia Polytechnic Institute and State University,2004. 被引量:1
  • 9Newman T R, Barker B A, Wyglinski A M, et al. Cognitive Engine Implementation for Wireless Multicarrier Transceivers[J]. Wiley Journal on Wireless Communications and Mobile Computing,2007,7 (9) : 1129-1142. 被引量:1
  • 10Newman T R, Evans J B. Parameter Sensitivity in Cognitive Radio Adaptation Engines[C]//3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2008). Oct. 2008 : 1-5. 被引量:1

共引文献54

同被引文献34

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部