期刊文献+

基于分类邮件代理MCP的垃圾邮件动态检测

Dynamic Detection of Spam Based on Classified Mail Proxy MCP
下载PDF
导出
摘要 针对互联网邮件中垃圾邮件占比暴增的问题,提出了一种基于分类代理MCP的动态检测算法.该方法基于近半年时间对校园网邮件宿主机及各代理虚拟机间传输的会话日志的采集,针对记录中各类投递状态及状态消息集进行了行为分析,最终达到对垃圾邮件的有效检测,从而为分拣提供依据.实验结果表明,在持续进行了若干频次的分类策略调节后,该检测算法的准确度可高达96.1%.该设计可对垃圾邮件宿主机及代理虚拟机的行为进行有效检测,从而彻底抑制垃圾邮件的产生. In order to solve the problem of increasing the proportion of spam in Internet mail, a dynamic detection algorithm based on MCP is proposed. Based on the collection of the session logs collected from the campus network mail hosts and virtual agents in the past six months,the method analyzes all kinds of delivery status and status message set in the record, and achieves the result of effective spam detection finally, so as to provide the basis for sorting. The experi-mental results show that after a certain number of frequency classification strategy is adjusted,the highest accuracy of the detection algorithm is up to 96.1%. The design detects the behavior of spam host and virtual machine effectively, and completely suppresses the generation of spam.
出处 《南京师范大学学报(工程技术版)》 CAS 2017年第3期80-86,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 中国高等教育学会教育信息化专项课题(2016XXYB02)
关键词 垃圾邮件宿主机 代理虚拟机 简单邮件传输协议会话 分类代理 分类器 邮件状态信息 spam host,proxy virtual machine,smtp session,classified agent,classifier,mail status message
  • 相关文献

参考文献4

二级参考文献47

  • 1王学军,赵琳琳,王爽.基于主动学习的视频对象提取方法[J].吉林大学学报(工学版),2013,43(S1):51-54. 被引量:3
  • 2夏桂梅,曾建潮.一种基于轮盘赌选择遗传算法的随机微粒群算法[J].计算机工程与科学,2007,29(6):51-54. 被引量:28
  • 3Liu W Y, Wang T. Active learning for online spam filte- ring [ J] . Information Retrieval Technology, 2008,4993 : 555-560. 被引量:1
  • 4Bouchachia A, Gabrys B, Sahel Z. Overview of some incre- mental learning algorithms [ C] //Proceedings of IEEE In- ternational Conference on Fuzzy Systems. London: IEEE, 2007:1-6. 被引量:1
  • 5Syed N, Liu H, Sung K. Handling concept drifts in incre- mental learning with support vector machines [ C ]//Pro- ceedings of the Workshop on Support Vector Machines at the International Joint Conference on Articial Intelligence (IJCAI-99). Stockholm:IJCAII and the Scandinavian AI Societies, 1999 : 317- 321. 被引量:1
  • 6Wu Y, Kozintsev I, Bouguet J Y, et al. Sampling strategies for active learning in personal photo retrieval [ C l//Pro- ceedings of ICME 2006. Piscataway :IEEE ,2006:529-532. 被引量:1
  • 7Yang J M, Liu Y N,Zhu X D, et al. A new feature selection based on comprehensive measurement both in inter-catego- ry and intra-category for text categorization [ J ]. Informa- tion Processing & Management,2012,48(4) :741-754. 被引量:1
  • 8Platt John. Sequential minimal optimization: a fast algo- rithm for training support vector machines [ R]. [ S. 1. ]: Microsoft Research, 1998. 被引量:1
  • 9Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami : IEEE, 2009 : 2372- 2379. 被引量:1
  • 10Cormack G V. TREC 2007 spam track overview [ C ]// Proceedings of the 16th Text Retrieval Conference. Gaithers- burg:National Institute of Standards and Technology, 2007 : 500- 274. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部