摘要
研究了野生小麦在发芽、成长、成熟的整个过程中数量的变化规律,并利用嵌入式方法把描述短期内连续变化的微分方程,嵌入到描述长期变化的差分方程中建立了小麦数量的嵌入式模型。在模型求解过程中,把贝努利方程的解离散化,利用差分方程平衡点的稳定性定理,揭示了小麦数量周期性变化的规律,讨论了平衡点趋于稳定、分岔和混沌的条件。
This paper discusses the number change rule of wild wheat in the process of germination, growth and maturity. Fur-thermore ,and it establishes the embedded model of wheat number by putting the differential equation, which describes a continuous change in a short term, into the discrete difference equations with a long-term variation. Finally, the stability of the equilibrium points are discussed. In the process of solving the embedded model, this paper discretizes the solution of the Bernoulli equation using the stability theorem of Equilibrium points for the difference equation, and reveals the periodic variation of wheat quantity, and also the conditions of equilibrium, bifurcation and chaos axe discussed.
出处
《渭南师范学院学报》
2017年第20期47-53,共7页
Journal of Weinan Normal University
基金
国家自然科学基金项目:Cayley-Klein几何及相应的相似几何中的曲线运动(11526174)
陕西省自然科学基金项目:分布参数时滞复杂神经网络的同步控制研究(2015JM1015)
陕西省教育厅专项科研项目:基于脉冲控制的分部参数复杂神经网络同步分析(17JK0824)
关键词
嵌入式模型
周期收敛
平衡点稳定性
embedded model
periodic convergence
equilibrium points stability