期刊文献+

一种改进的基于码本和高斯混合模型的视频背景分离

An improved video background separation based on codebook and Gaussian mixture model
下载PDF
导出
摘要 文章提出一种基于改进的码本(CB)和高斯混合模型(GMM)的视频背景分离方法。该方法是以自适应的高斯混合模型背景为基础,为每个颜色像素构建混合高斯背景模型,可以对视频帧中每个像素的高斯分布数进行动态控制,并且通过CB(Codebook)算法得到每个像素的时间序列模型,从而对高斯分布的各参数进行学习。实验结果表明,该方法在背景分离的精确度和处理时间上都表现出优异的性能,此外还具有良好的适用性,对复杂场景的变化,可以有效快速地分离视频的前景和背景。 This paper proposes a video background separation method based on improved Codebook ( CB ) and Gauss mixture model ( GMM ).This method is based on the adaptive Gauss mixture model background,and constructs a hybrid Gauss background model for each pixel color,which can dynamically control the Gauss distribution number of each pixel in the video frame,and through CB ( Codebook) algorithm to obtain each pixel of the time series model,and study on the parameters of Gauss distribution. The experimental results showthat the proposed method in accuracy and time background separation have shown excellent performance,also has good applicability,ccan effectively separate the foreground and background from a video.
作者 詹敏 邹小波
机构地区 华侨大学工学院
出处 《微型机与应用》 2017年第19期48-51,共4页 Microcomputer & Its Applications
基金 华侨大学研究生科研创新能力培育计划项目(1511422006)
关键词 码本 高斯混合模型 背景分离 视频帧 高斯分布 Codebook( CB) Gauss Mixture Model( GMM ) background separation video frame gauss distribution
  • 相关文献

参考文献1

二级参考文献10

  • 1PHAM D L. Fuzzy clustering with spatial constraints [C]. in: IEEE Proceedings of the International Conference Image Processing, New York, 2002: 65-68. 被引量:1
  • 2CHEN S C, ZHANG D Q. Robust image segmentation using FCM .with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transaction. Systems Man Cybernet, B 2004, 34(4): 1907-1916. 被引量:1
  • 3CAI W, CHEN S, ZHANG D Q. Fast and robust fuzzy C2means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition, 2007, 40 (3) : 825-838. 被引量:1
  • 4SZILAGYI L, SZILAGYI S M, BENYo Z. A modified FCM algorithm for fast segmentation of brain MR images. Analysis and Design of Intelligent Systems Using Soft ComputingTechniques[M]. Heidelberg: Springer, 2007: 119-127. 被引量:1
  • 5AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transaction. Med. Imaging, 2002, 21: 193-199. 被引量:1
  • 6CHUANG K S, TZENG H L, CHEN S. Fuzzy c-means clustering with spatial information for image segmentation[J]. Computerized Medical Imaging and Graphics, 2006, 30: 9-16. 被引量:1
  • 7YANG Y, ZHENG C X, LIN P. Fuzzy clustering with spatial constraints for image thresholding [J]. Optica Applicata, 2005, 35: 309-315. 被引量:1
  • 8BEZDEK J C. Cluster validity with fuzzy sets [J]. Cybern, 1974, 3: 58-73. 被引量:1
  • 9BEZDEK J C Mathematical models for systematic and taxonomy [C]. In: Proceedings of eight international conference on numerical taxonomy, San Francisco, 1975: 143-166. 被引量:1
  • 10王志兵,鲁瑞华.改进的基于模糊C-均值聚类的图像分割算法[J].西南大学学报(自然科学版),2009,31(3):169-172. 被引量:11

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部