期刊文献+

非李普希兹条件下马尔科夫调制随机延迟微分方程数值解的收敛性(英文) 被引量:2

Convergence of Numerical Solutions to Stochastic Delay Differential Equations with Markovian Swithing Under Non-Lipschitz Conditions
下载PDF
导出
摘要 在全局李普希兹条件下,已经建立了马尔科夫调制的随机微分方程的欧拉方法.然而对于实际系统,全局李普希兹条件通常不成立.在本文中,在弱于全局李普希兹条件的条件下,我们证明马尔科夫调制的随机微分方程的欧拉方法是收敛的,并且其收敛阶和全局李普希兹条件下相同. The Euler scheme of the stochastic delay differential equations with Markovian switching (SDDEwMS) has been developed under the global Lipschitz (GL) condition. However the GL condition is often not met by systems of interest. In this paper, we prove that under certain conditions, weaker than the GL condition, and the Euler scheme applied to SDDEwMS is convergent with the same order of accuracy as the Euler method under the CL condition.
作者 范振成
出处 《应用数学》 CSCD 北大核心 2017年第4期874-881,共8页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of Fujian Province(2015J01588) the Science Project Municipal University of Fujian Province(JK2014041)
关键词 随机延迟微分方程 马尔科夫调制 欧拉方法 单边李普希兹条件 多项式增长条件 Stochastic delay differential equation Markovian Switching Euler method One-sided Lipschitz condition Polynomial growth condition
  • 相关文献

参考文献1

二级参考文献11

  • 1X R Mao. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processesand their Applications, 1999,79 : 45-67. 被引量:1
  • 2Ji Y, H JChizeck. Controllability, stabilizability and continuous-time Markovian jump linear quadratic control[J ]. IEEE. Trans. Automat. Control, 1990,35 : 777 -788. 被引量:1
  • 3G K Basak,Bisi A,Ghosh M K. Stability of a random diffusion with linear drift[J]. J. Math. Anal. Appl. ,1996,202 : 604-622. 被引量:1
  • 4Shaikhet L. Stability of stochastic hereditary systems with Markov switching[J]. Theory Stoc. Process,1996,2(18) : 180- 184. 被引量:1
  • 5V Dragan,T Morozan. Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise[J]. Stoch. Anal. Appl. , 2000,20 : 33-92. 被引量:1
  • 6E Platen. An introduction to numerical methods for stochastic differential equations[J], Acta. Numerica. ,1999,8:197-246. 被引量:1
  • 7R H Bokor, Stochastically stable one-step approximations of solutions of stochastic ordinary differential equations[J]. Applied Numerical Math. , 2003,44 : 299 -312. 被引量:1
  • 8R Fierro, S Torres. The Euler scheme for Hilbert space valued stochastic differential equations[J]. Statistic & Probability Letters, 2001,51 : 207 -213. 被引量:1
  • 9C G Yuan. X R Mao. Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching[J]. Math. Comput. Simulation,2004,64 : 223-235. 被引量:1
  • 10A V Skorohod. Asymptotic methods in the theory of stochastic differential equations[M]. American Mathematical Society, 1989. 被引量:1

共引文献7

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部