期刊文献+

状态反馈脉冲控制比率依赖Holling-Tanner系统的周期解 被引量:1

Periodic Solution of Ratio-Dependent Holling-Tanner System with Impulsive State Feedback Control
下载PDF
导出
摘要 本文研究具有状态反馈脉冲控制的比率依赖Holling-Tanner系统.在连续系统的正平衡点为不稳定焦点的前提下,利用微分方程几何理论及后继函数方法,获得脉冲系统阶1周期解的存在性、唯一性及轨道稳定性.利用数值模拟验证主要结论,并且数值结果得到在极限环内脉冲系统存在阶k周期解.最后,给出主要结论. In this paper, a ratio-dependent Holling-Tanner system with state impulse is researched. Provided that the positive equilibrium is a unstable focus, by means of the geometry theory of the dif- ferential equation and the method of Successor function, the existence and uniqueness of order-1 periodic solution of impulsive system are obtained. The mathematical results are verified by the numerical simu- lations, moreover, numerical results show that the impulsive system has order-k periodic solutions within the limit cycle for some parameters. Finally, some main conclusions are proposed.
出处 《应用数学》 CSCD 北大核心 2017年第4期760-773,共14页 Mathematica Applicata
基金 国家自然科学基金(61364020 11361068) 玉林师范学院重点科研项目(2015yjzd02)
关键词 Holling-Tanner系统 极限环 后继函数 阶1周期解 轨道稳定性 Holling-Tanner system Limit cycles Successor function Order-1 periodic solutionOrbital asymptotically stability
  • 相关文献

参考文献2

二级参考文献28

  • 1Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1976. 被引量:1
  • 2Clark C W. Bioeconomic Modeling and Resource Management [C]//Levin S A, Hallam T G, Grose L J eds. Applied Mathematical Ecology, New York : Springer-Verlag, 1989. 被引量:1
  • 3Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1990. 被引量:1
  • 4GohB S. Managenment and Analysis of Biological Populations[M]. Amsterlan:Elsevier Scientific Publishing Company, 1980. 被引量:1
  • 5Bonotto E M. Flows of Characteristic in Impulsive Semidynamical Systems [J]. J. Math Anal App1,2007 ,332 :81-96. 被引量:1
  • 6Bonotto E M. LaSalle' s Theorems in Impulsive Semidynamical Systems[J]. Cadernos de Matem Atica,2008,9:157-168. 被引量:1
  • 7Bonotto E M, Federson M. Limit Sets and the Poincar6-Bendixson Theorem in Impulsive Semidynamical Systems [J]. J Differential Equations ,2008,244:2334-2349. 被引量:1
  • 8Bonotto E M, Federson M. Poisson Stability for Impulsive Semidynamical Systems [J]. Nonlinear Analysis,2009,71 : 148-6156. 被引量:1
  • 9Bonotto E M, Federson M. Topological Conjugation and Asymptotic Stability in Impulsive Semidynamical Systems [J]. J Math Anal App1,2007,326:869-881. 被引量:1
  • 10S K Kaul. Stability and Asymptotic Stability in Impulsive Semidynamical Systems [J]. J Appl Math. Stochastic Anal, 1994, 7(4) :509-523. 被引量:1

共引文献59

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部