摘要
WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concen- tration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range,and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identify a fiat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a fiat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concen- tration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range,and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identify a fiat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a fiat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
基金
Supported by the National Natural Science Foundation of China under Grant No 11574367
the National Basic Research Program of China under Grant Nos 2013CB921904 and 2015CB921300
the National Key Research and Development Program of China under Grant No 2016YFA0300600
the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020300
the US Department of Energy under Grant No DE-SC0014208