期刊文献+

基于卷积神经网络的军事图像分类 被引量:19

Military image classification based on convolutional neural network
下载PDF
导出
摘要 由于军事背景下战场上不同目标的相似度极高以及复杂情况下的分类识别率不高,传统视觉特征的分类精度已不能满足要求。针对含有特定军事目标的大规模图像分类问题,构造了一种新的基于主成分分析(principal components analysis,PCA)白化的卷积神经网络结构,有效地降低了数据间的相关性,加强了学习能力,提高了目标分类的准确率。利用大规模的军事图像数据集对该模型进行了识别精度评估,实验表明,与基于视觉特征的词袋模型以及经典的卷积神经网络分类算法相比,该算法对于军事目标的分类精度有明显提高。 The classification accuracy of the traditional visual features can not meet the requirements in the application of modem military affairs due to the extremely high similarity of the different objects in the battlefield and low recognition rate in complex conditions. This paper presented a new architecture of the convolutional neural network (CNN) based on PCA whitening for solving the classification problem of large-scale images which contained some specific military objects. It efficiently eliminated the relativity of sample data, enhanced the learning ability and improved the accuracy of the object recognition. It tested and evaluated the new CNN model with the large-scale data from military images and compared with the traditional methods. The experiment results show that the algorithm has higher recognition rate on military object recognition.
作者 高惠琳
出处 《计算机应用研究》 CSCD 北大核心 2017年第11期3518-3520,共3页 Application Research of Computers
基金 国家自然科学基金创新研究群体资助项目(61321002) 国家自然科学基金重大国际合作项目(61120106010) 国家教育部长江学者创新团队资助项目(IRT1208)
关键词 军事图像分类 深度学习 卷积神经网络 主成分分析白化 随机池化 military image classification deep learning convolutional neural network PCA whitening stochastic-pooling
  • 相关文献

参考文献3

二级参考文献43

  • 1Hinton G E, Osindero S, The Y. A fast learning algorithm for deep belief nets [J]. Neural Computation(S0899-7667), 2006, 18: 1527-1554. 被引量:1
  • 2V1NOD NAIR, GEOFFREY E HINTON. Rectified Linear Units Improve Restricted Boltzmann Machines [C]// Appearing in Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807-814. 被引量:1
  • 3MATTHEW D ZEILER, ROB FERGUS. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks [C]// International Conference on Learning Representations, Scottsdale, Arizona, USA, May 02-04, 2013:1301-1310. 被引量:1
  • 4Sukittanon S, Surendran A C, Platt J C, et al. Convolutional networks for speech detection [C]// Proceedings of the Eighth International Conference on Spoken Language Processing, Jeju Island: ISCA, 2001: 1077-1080. 被引量:1
  • 5Yin-Nong Chen, Chin-Chuan Han. A CNN-based face detector with a simple feature map and a coarse-to-fine classifier [J]. Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2009, 31(3): 1-12. 被引量:1
  • 6Genevieve B Orr, Klaus-Robert Muller. Neural Networks: Tricks of the Trade [M]. Berlin/Heidelberg: Springer Verlag, 1998: 9-50. 被引量:1
  • 7Alex Krizhevsky, Ilya Sutskever, Geoff Hinton. Imagenet classification with deep con-volutional neural networks[J]. Advances in Neural Information Processing Systems 25, 2012:1106-1114. 被引量:1
  • 8DH Hubel,TN Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physi- ology(London), 1962,160 : 106-154. 被引量:1
  • 9K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in po- sition[J]. Biological Cybernetics, 1980, 36:193-202. 被引量:1
  • 10Y. I~ Cun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86( 11 ) :2278-2324. 被引量:1

共引文献63

同被引文献141

引证文献19

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部