期刊文献+

基于改进粒子群优化算法的分数阶PID控制 被引量:22

Fractional Order PID Control Based on Improved PSO Algorithm
下载PDF
导出
摘要 分数阶PID控制器参数优化是当前分数阶控制领域研究的重要课题,为了避免分数阶PID控制器设计和参数整定的复杂性,提出一种基于改进粒子群算法的分数阶PID参数优化算法。该算法的基本思想是根据正交设计的多因素多水平试验得到改进粒子群算法的参数最优取值,然后使用改进的粒子群优化算法对分数阶PID控制器的参数进行离线优化,从而确定分数阶PID控制器参数的最优取值。通过仿真与遗传算法以及标准粒子群优化算法相比较,仿真结果表明该算法整定参数收敛速度快,且闭环系统的阶跃响应具有超调量小、上升速度快、调节时间短等优点。 Fractional order PID controller parameter optimization is the important subject in the research field of fractional order control, in order to avoid the complexity in the design of fractional order PID controller and tuning of its parameters, a fractional order PID parameter optimization algorithm based on improved particle swarm optimization is proposed. The basic idea of the algorithm is to obtain the optimal parameter value of the improved particle swarm optimization algorithm based on multiple factors and multiple level experiment of orthogonal design, then the improved particle swarm optimization algorithm is used to off-line optimize the parameters of the fractional order PID controller, so as to determine the optimal values of the parameters of the fractional order PID controller. Finally, the algorithm is compared with the genetic algorithm and the standard particle swarm optimization algorithm through simulation, the simulation results show that the proposed algorithm has fast convergence of parameter tuning, and the step response of the closed loop system has advantages such as little overshoot, fast rising velocity, short adjusting time, etc.
作者 郑恩让 姜苏英 ZHENG En-rang JIANG Su-ying(School of Electrical and Information Engineering, Shanxi University of Science and Technology, Xi'an 710021, China)
出处 《控制工程》 CSCD 北大核心 2017年第10期2082-2087,共6页 Control Engineering of China
基金 陕西省科技厅项目(2012K09-13)
关键词 分数阶PID控制 粒子群优化 遗传算法 参数优化 Fractional order PID control particle swarm optimization genetic algorithm parameter optimization
  • 相关文献

参考文献15

二级参考文献71

  • 1郭文忠,陈国龙.一种新型的遗传算法及其应用[J].福州大学学报(自然科学版),2004,32(4):454-456. 被引量:5
  • 2王芳,邱玉辉.一种引入单纯形法算子的新颖粒子群算法[J].信息与控制,2005,34(5):517-522. 被引量:18
  • 3王福林,王吉权,吴昌友,吴秋峰.实数遗传算法的改进研究[J].生物数学学报,2006,21(1):153-158. 被引量:30
  • 4PODLUBNY I. Fractional-order systems and PI^λD^u-controllers[ J]. IEEE Transactions on Automatic Control, 1999, 44(1) : 208 -214. 被引量:1
  • 5ZHAO CHUN-NA, XUE DING-YU, CHEN YANG-QUAN. A frac- tional order PID tuning algorithm for a class of fractional order plants [ C]//ICMA2005: Proceedings of the 2005 IEEE International Conference on Mechatronics and Automation. Washington, DC: IEEE Computer Society, 2005:216 - 221. 被引量:1
  • 6LI HONG-SHENG, CHEN YANG-QUAN. A fractional order proportional and derivative (FOPD) controller tuning algorithm[C]// CCDC 2008:2008 Chinese Control and Decision Conference. Yantai, Shandong, China: [s. n. ], 2008:4059-4063. 被引量:1
  • 7HAMAMCI S E. Stabilization using fractional-order PI and PID controllers [ J]. Nonlinear Dynamics, 2008, 51 (1/2) : 329 - 343. 被引量:1
  • 8MONJE C A, VINAGRE B M, CHEN Y Q, et al. Optimal tunings for fractional PI^λD^u[ C]// Proceedings of the 1st IFAC Symposium on Fractional Differentiation and its Applications. Bordeaux, France: [ s. n. ], 2004:675 - 686. 被引量:1
  • 9CHEN S F. Particle swarm optimization for PID controllers with robust testing [C]// Proceedings of the 6th International Conference on Machine Learning and Cybernetics. Hong Kong, China: [ s. n. ], 2007:956-961. 被引量:1
  • 10CAO JUN-YI, CAO BING-GANG. Design of fractional order controller based on particle swarm optimization [ J]. International Journal of Control, Automation, and Systems, 2006. 4(6): 775-781. 被引量:1

共引文献329

同被引文献193

引证文献22

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部