期刊文献+

光学图层分解方法综述

Review of Optical Layers Decomposition Method
下载PDF
导出
摘要 光学图层分解能够为物体识别提供有用信息,是图像内容理解和分析的基础。按照输入信息的不同可以将光学图层分解方法分为基于单幅图像和基于图集2类。对典型的光学图层分解方法进行论述和分析,包括交互式图层先验法、相对光滑度分解法、多重反射信息法、交互层叠法、反射变换法和稀疏性运动盲源法,阐述这些方法的原理和特点。结合软件测试平台验证和分析上述光学图层分解方法的优缺点及适用范围,并对光学图层分解方法的时效性、完备性和实用性进行展望。 Optical Layers Decomposition(OLD) can provide useful information for object recognition,and is the basis of image content understanding and analysis. According to the different input information, the OLD method can be divided into two kinds based on single image and atlas. This paper discusses and analyzes the typical OLD method, such as interactive layer prior method, relative smoothness decomposition method, multiple reflection information method, alternating stack method, reflection transformation method and sparse motion blind source method, explains the principles and characteristics of these methods. The software test platform is used to verify and analyze the advantages and disadvantages as well as the scope of application. The timelines,completeness and practicability of the OLD method are prospected.
作者 曹芙蓉 吴鑫
出处 《计算机工程》 CAS CSCD 北大核心 2017年第10期268-276,共9页 Computer Engineering
基金 中国博士后科学基金(30101166281) 中央高校基本科研业务费专项资金(20101166281 20103166281)
关键词 图层分解 病态问题 稀疏性 图层先验 成像模型 layer decomposition ill-posed problem sparsity image prior imaging model
  • 相关文献

参考文献4

二级参考文献47

  • 1Boykov Y, Jolly M. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images[C]//Proceedings of IEEE International Conference on Computer Vision. Vancouver, Canada: [ s. n.], 2001(1) :105 - 112. 被引量:1
  • 2Freedman D, Zhang T. Interactive graph cut based segmentation with shape priors[C] //Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. San Diego, USA: [s. n. ], 2005(1) : 755 - 762. 被引量:1
  • 3Kumar M, Torr P, Zisserman A. OBJ cut[C] ///Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. San Diego, USA: [s. n. ], 2005(1):18-25. 被引量:1
  • 4Kohli P, Rihan J, Bray M, et al. Simultaneous segmentation and pose estimation of humans using dynamic graph cuts[J]. International Journal of Computer Vision, 2008,79(3) :285 - 298. 被引量:1
  • 5Li Y, Sun J, Tang C K, et al. Lazysnapping[C]//Proceedings of ACM SIGGRAPH. Los Angeles, USA:[s. n. ], 2004:303 -308. 被引量:1
  • 6Veksler O. Star shape prior for graph-cut image segmentation[C] //Proceedings of European Conference on Computer Vision. Marseille, France: [s.n. ], 2008, 5304:454 - 467. 被引量:1
  • 7Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground extraction using iterated graph cut[J]. ACM Transactions on Graphics, 2004,23(3) :309 - 314. 被引量:1
  • 8Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2) :147 - 159. 被引量:1
  • 9Li S Z. Markov random field modeling in image analysis [M]. 3rd ed. New York: Springer, 2008. 被引量:1
  • 10Comanieiu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) :603 - 619. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部