期刊文献+

Integration of Core Data, Well Logs and Seismic Attributes for Identification of the Low Reservoir Quality Units with Unswept Gas in the Carbonate Rocks of the World's Largest Gas Field 被引量:1

Integration of Core Data, Well Logs and Seismic Attributes for Identification of the Low Reservoir Quality Units with Unswept Gas in the Carbonate Rocks of the World's Largest Gas Field
原文传递
导出
摘要 Tight zones of the gas bearing Kangan and Dalan formations of the South Pars gas field contain a considerable amount of unswept gas due to their low porosity, low permeability and isolated pore types. The current study, integrates core data, rock elastic properties and 3D seismic attributes to delineate fight and low-reservoir-quality zones of the South Pars gas field. In the first step, the dynamic reservoir geomechanical parameters were calculated based on empirical relationships from well log data. The log-derived elastic moduli were validated with the available laboratory measurements of core data. Cross plots between estimated porosity and elastic parameters based on Young's modulus indicate that low porosity zone coincide with high values of Young's module. The results were validated with petro- graphic studies of the available thin sections. The core samples with low porosity and permeability are correlated with strong rocks with tight matrix frameworks and high elastic values. Subsequently, rock elastic properties including Young's modulus and Poisson's ratio along with porosity were estimated by using neural networks from a collection of 3D post-stack seismic attributes, such as acoustic impedance (ALl), instantaneous phase of AI and apparent polarity. Distinguishing low reservoir quality areas in pay zones with unswept gas is then facilitated by locating low porosity and high elastic modulus values. An- hydrite zones are identified and eliminated as non-pay zones due to their characterization of zero porosi- ty and high Young modulus values. The methodology described has applications for unconventional re- servoirs more generally, because it is able to distinguish low porosity and permeability zones that are po- tentially productive from those unprospective zones with negligible reservoir quality. Tight zones of the gas bearing Kangan and Dalan formations of the South Pars gas field contain a considerable amount of unswept gas due to their low porosity, low permeability and isolated pore types. The current study, integrates core data, rock elastic properties and 3D seismic attributes to delineate fight and low-reservoir-quality zones of the South Pars gas field. In the first step, the dynamic reservoir geomechanical parameters were calculated based on empirical relationships from well log data. The log-derived elastic moduli were validated with the available laboratory measurements of core data. Cross plots between estimated porosity and elastic parameters based on Young's modulus indicate that low porosity zone coincide with high values of Young's module. The results were validated with petro- graphic studies of the available thin sections. The core samples with low porosity and permeability are correlated with strong rocks with tight matrix frameworks and high elastic values. Subsequently, rock elastic properties including Young's modulus and Poisson's ratio along with porosity were estimated by using neural networks from a collection of 3D post-stack seismic attributes, such as acoustic impedance (ALl), instantaneous phase of AI and apparent polarity. Distinguishing low reservoir quality areas in pay zones with unswept gas is then facilitated by locating low porosity and high elastic modulus values. An- hydrite zones are identified and eliminated as non-pay zones due to their characterization of zero porosi- ty and high Young modulus values. The methodology described has applications for unconventional re- servoirs more generally, because it is able to distinguish low porosity and permeability zones that are po- tentially productive from those unprospective zones with negligible reservoir quality.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2017年第5期857-866,共10页 地球科学学刊(英文版)
关键词 tight zones unswept gas elastic parameters reservoir quality seismic attributes South Pars gas field. tight zones, unswept gas, elastic parameters, reservoir quality, seismic attributes, South Pars gas field.
  • 相关文献

参考文献1

二级参考文献11

共引文献28

同被引文献8

引证文献1

  • 1Zhien Zhang,David Wood,James G.Speight,Ryosuke Okuno,Jianchao Cai.Foreword[J].Journal of Earth Science,2017,28(5).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部