期刊文献+

基于多特征融合的金融领域科研合作推荐研究 被引量:15

Collaboration Recommendation of Finance Research Based on Multi-feature Fusion
原文传递
导出
摘要 【目的】科研合作关系是一种重要的社会网络。为了促进科研合作,提高科研生产率,对金融领域的科研合作推荐模型进行研究。【方法】建立金融领域个人、机构和区域三个层面的科研合作网络,提出一种新的融合基于邻居节点和基于路径的网络特征的科研合作推荐模型,并从个人、机构和区域三个层面进行实证检验。【结果】通过对2000年到2014年刊载的68 905篇金融领域的文章进行分析并构建科研合作网络,在个人、机构和区域三个层面上,基于特征融合的链接预测方法的AUC值分别为84.25%、87.34%和91.84%,均高于基于邻居节点的算法和基于路径的算法的AUC值。【局限】在进行训练集和测试集选取的时候只按时间进行切分,有待使用更多的切分方式对实验结果进行优化。【结论】本文有助于金融科研领域的个人、机构和区域寻求合作对象,为进行科研网络的研究以及科研合作推荐的学者提供新的研究方法和思路。 [Objective] Research collaboration builds an important social network system. This paper proposes a new recommendation model for research collaboration in finance, aiming to promote the scientific collaboration and improve research productivity. [Methods] First, we established the scientific collaboration networks at individuals, institutions and regions levels. Then, we established a recommendation model based on network neighbors and paths. Finally, we conducted empirical study to examine the model at three levels. [Results] A total of 68 905 articles published from 2000 to 2014 on finance were analyzed to construct their research collaboration networks. The AUC values of the proposed model at individual, institutional and regional levels were 84.25%, 87.34%, and 91.84%, respectively, which were higher than those of the traditional algorithms. [Limitations] The training and testing sets were only classified by time. More segmentation methods were needed to optimize the new model. [Conclusions] This study helps researchers find collaboration opportunities, and provides new directions for studies on scientific collaboration networks.
作者 余传明 龚雨田 赵晓莉 安璐 Yu Chuanming Gong Yutian Zhao Xiaoli An Lu(School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China School of Information Management, Wuhan University, Wuhan 430072, China)
出处 《数据分析与知识发现》 CSSCI CSCD 2017年第8期39-47,共9页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金面上项目"大数据环境下基于领域知识获取与对齐的观点检索研究"(项目编号:71373286) 国家自然科学基金青年项目"突发公共卫生事件社交媒体信息主题演化与影响力建模"(项目编号:71603189) 教育部人文社会科学研究青年基金项目"突发公共卫生事件情境下社交媒体信息影响力模型与预测研究"(项目编号:16YJC870001)的研究成果之一
关键词 链接预测 科研合作推荐 科研合作网络 多特征融合 Link Prediction Scientific Collaboration Recommendation Scientific Collaboration Network Multi-feature Fusion
  • 相关文献

参考文献4

二级参考文献55

  • 1马费成.论情报学的基本原理及理论体系构建[J].情报学报,2007,26(1):3-13. 被引量:136
  • 2PIAO S, WHITTLE J. A feasibility study on extracting twitterusers’ interests using NLP tools for serendipitous connections[C ] //Privacy, Security, Risk and Trust (Passat),2011IEEE Third International Conference on and 2011 IEEE ThirdInternational Conference on Social Computing ( Socialcom).IEEE, 2011: 910-915. 被引量:1
  • 3SAKAGUCHI T,AKAHO Y’ TAKAGI T, et al. Recommenda-tions in twitter using conceptual fuzzy sets [C] //Fuzzy Infor-mation Processing Society (NAFIPS),2010 Annual Meeting ofthe North American. IEEE, 2010: 1-6. 被引量:1
  • 4SARWAR B,KARYPIS G,KONSTAN J, et al. Analysis ofrecommendation algorithms for e-commerce [ C] //Proceedingsof the 2nd ACM Conference on Electronic Commerce. ACM,2000: 158-167. 被引量:1
  • 5LINDEN G, SMITH B , YORK J. Amazon, com recommenda-tions :item-to-item collaborative filtering [ J]. Internet Compu-ting, IEEE, 2003, 7 (1): 76-80. 被引量:1
  • 6KIM Y,SHIM K. TWILITE: arecommendation system for twitter using aprobabilistic model based on latentDirichlet allocation [ J]. Information Sys-tems, 2014,42: 59-77. 被引量:1
  • 7WENG J, LIM E P,JIANG J’et al. Twitter rank : finding topic-sensi-tive influential twitterers [ C] //Proceed-ings of the Third ACM International Con-ference on Web Search and Data Mining.ACM, 2010: 261-270. 被引量:1
  • 8BLEI D M, NGA Y, JORDAN M I. Latent dirichlet allocation[J]. The Journal of Machine Learning Research,2003 (3):993-1022. 被引量:1
  • 9NEWMAN M E J. Analysis of weighted networks [J]. PhysicalReview E,2004 , 70 ( 5). 被引量:1
  • 10GIRVAN M, NEWMAN M E J. Community structure in socialand biological networks [ J ]. Proc. Natl. Acad. Sci,2002,99 (12) : 7821-7826. 被引量:1

共引文献94

同被引文献147

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部