期刊文献+

基于Boosting算法软件可靠性动态赋权组合建模

Combining Modeling of Software Reliability Dynamic Weighting Based on Boosting Algorithm
下载PDF
导出
摘要 目前,许多软件可靠性增长模型(SRGMs)被提出并应用于软件开发过程,但还没有在不同条件下都表现良好的普适性模型。将若干独立模型进行组合可提高单个模型的可靠性评估和预计精度。本文基于机器学习算法(Boosting算法),建立基于单个模型变异的动态赋权组合模型(ASCM)。ASCM模型可有效地改进单个原始模型的拟合性能。 At present, many software reliability growth models (SRGMs) have been proposed and applied to the software development process, but have not yet performed a good universal model under different conditions. Combining several independent models can improve the reliability and expected accuracy of a single model. Based on the machine learning algorithm (Boosting algorithm), a dynamic weighting model (ASCM) based ona single model variation is established. The ASCM model can effectively improve the fitting performance of a single original model.
出处 《数字技术与应用》 2017年第8期120-123,共4页 Digital Technology & Application
关键词 软件可靠性 机器学习 动态赋权 组合模型 software reliability machine learning dynamic empowerment combinatorial model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部