摘要
针对(1+1)维Benjamin-Ono(BO)方程,应用初值扰动双线性变换,结合同宿测试法获得了新的初值扰动周期呼吸波解和扭结呼吸波解,结合二次函数拟设法获得了初值扰动有理波解及其动力学分叉点。直观展示了一些动力学局域扰动结构,结果表明了该方程动力学行为对初值的敏感性。
A new family of periodic breather wave solutions and kink breather wave solutions of initial perturbation for the (l+l)-dimensional Benjamin-Ono(BO) equation are obtained by using the homoclinic test method with bilinear transformation of initial perturbation. Meanwhile, rational wave solutions of initial perturbation and bifurcation point of dynamics are also gained by applying quadratic function ansatz method. Some local perturbation structure of dynamics are shown directly. Results show that the dynamical behavior of the equation is sensitive to initial values.
作者
宋莉莉
蒲志林
鲜大权
SONG Lili PU Zhilin XIAN Daquan(School of Mathematics and Software Science, Sichuan Normal University, Chengdu 610101, China School of Science, Southwest University of Science and Technology, Mianyang 621010, China)
出处
《量子电子学报》
CSCD
北大核心
2017年第5期550-556,共7页
Chinese Journal of Quantum Electronics
基金
国家自然科学基金
11204250
11202175~~