期刊文献+

随机混流U型拆卸线平衡排序问题多目标进化算法优化 被引量:4

Multi-objective Evolutionary Algorithm Optimization of Stochastic Mixed-model U-shaped Disassembly Line Balancing and Sequencing Problem
下载PDF
导出
摘要 针对混流U型拆卸线平衡排序问题,考虑拆卸时间不确定,建立了该问题最小拆卸线平均闲置率、尽早拆卸危害和高需求零部件、最小化平均方向改变次数的多目标优化模型,并提出一种基于分解和动态邻域搜索的混合多目标进化算法(Hybrid Multi-objective Evolutionary Algorithm Based on Decomposition,HMOEA/D)。该算法通过采用弹性任务分配策略、动态邻域结构和动态调整权重以保证解的可行性并搜索得到分布较好的非劣解集。最后,仿真求解实验设计技术(DOE)生成的测试算例,结果表明HMOEA/D较其它算法能得到更接近Pareto最优、分布更好的近似解集。 To solve the mixed model U-shaped disassembly line balancing and sequencing problem with stochastic task times, a mathematical model is established aiming at minimizing mean line idle rates, removing hazardous and high-demand parts as early as possible and minimizing the mean number of part removal direction changes. Besides, a hybrid multi-objective evolutionary algorithm based on decomposition and dynamic neighborhood search method(HMOEA/D) is proposed to solve the problem. In HMOEA/D, a flexible tasks assignment strategy, dynamic neighborhood structure and dynamic weight vector adjustment are adopted to ensure the solutions' feasibil- ity and the distribution of the non-dominated set. Finally, the algorithm is tested on benchmark instances generated by using Design of Experiment(DOE)techniques. Experimental results show that HMOEA/D can get an approximation set closer to the Pareto optimal front and distributed better when compared to other algorithms.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2017年第9期52-61,共10页 Operations Research and Management Science
基金 国家自然科学基金资助项目(Nos.71471151 61573264)
关键词 混流 U型拆卸线 HMOEA/D算法 PARETO最优解集 mixed model U-shaped disassembly line HMOEA/D algorithm Pareto optimal set
  • 相关文献

参考文献2

二级参考文献24

  • 1王峻峰,李世其,刘继红.面向绿色制造的产品选择拆卸技术研究[J].计算机集成制造系统,2007,13(6):1097-1102. 被引量:20
  • 2GUNGOR A,GUPTA S M,POCHAMPALLY K,et al. Complications in disassembly line balancing [C]//Proceedings of SPIE. Bellingham, Wash. ,USA:SPIE,2001:289-298. 被引量:1
  • 3ALTEKIN F T, KANDILLER L, OZDEMIREL N E. Disassembly line balancing with limited supply and subassembly availability [C]//Proeeedings of SPIE. Bellingham, Wash. , USA: SPIE,2004 : 59-70. 被引量:1
  • 4AGRAWAL S, TIWARI M K. A collaborative ant colony algorithm to stochastic mixed-model U-shaped disassembly line balancing and sequencing problem[J].International Journal of Production Research, 2008,46(2) : 1405-1429. 被引量:1
  • 5MCGOVERN S M, GUPTA S M. 2-Opt heuristic for the disassembly line balancing problem[C]// Proceedings of SHE. Bellingham, Wash. , USA: SHE, 2004 : 71-84. 被引量:1
  • 6MCGOVERN S M, GUPTA S M. A balancing method and genetic algorithm for disassembly line balaneing[J]. European Journal of Operational Research,2007,179(3):692-708. 被引量:1
  • 7YAGMAHAN B, YENISEY M M. Ant colony optimization for multi-objective flow shop scheduling problem[J]. Computers and Industrial Engineering,2008,54(3):411-420. 被引量:1
  • 8GARCIA M C, CORDON O, HERRERA F. A taxonomy and an empirical analysis of multiple objective ant colony optimiza- tion algorithms for the bi-criteria TSP[J]. European Journal of Operational Research, 2007,180 ( 1 ) : 116-148. 被引量:1
  • 9DEB K, PRATAP A, AGARWAL S. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. 被引量:1
  • 10BLUM C, BAUTISTA J, PEREIRA J. Beam-ACO applied to assembly line balancing[C]//Proceedings of the 5th International Workshop-ANTS2006. Berlin, Germany:Springer-Verlag, 2006:96 107. 被引量:1

共引文献80

同被引文献92

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部