摘要
为进行高分辨到达角(DOA)估计的同时避免稀疏类算法的不足,提出了协方差拟合旋转不变子空间信号参数估计(ESPRIT)算法.首先将协方差拟合准则转换成半正定规划问题,利用凸优化进行求解,得到更接近理论值的信号协方差矩阵;然后对估计的信号协方差矩阵进行特征分解,利用信号子空间和噪声子空间特征值的差异估计信源个数;最后利用子空间旋转不变性反解出未知DOA.仿真实验从DOA估计精度、分辨率等方面验证了该算法的有效性,较传统ESPRIT算法具有更高的DOA估计分辨率并且受相干信源影响小;与稀疏类算法相比,不依赖先验信息以及避免了网格失配问题.
Spare representation based direction of arrival(DOA)estimation algorithms have the merits of high resolution and good adaptability to coherent signals,while they suffer from the shortages of depending on prior information and off-grid problem.In order to get high DOA estimation resolution and avoid the shortcomings of spare representation algorithms,covariance fitting estimation of signal parameters by rotational invariance technique(ESPRIT)algorithm is proposed in this paper.Firstly,covariance fitting criterion is converted into a semi-definite programming problem solved by convex optimization.As a result,a signal covariance matrix which is closer to theoretical value is obtained.Then,eigen decomposition of the estimated signal covariance matrix is conducted and the number of signals is estimated through the differences between eigenvalues of signal subspace and noise subspace.Finally,rotational invariance technique of signal subspace is used to estimate DOA.Simulation experiments have proved the validity of the method.Compared with traditional ESPRIT algorithm,the proposed algorithm has higher DOA estimation resolution and is slightly affected by coherent signals.It is also superior to spare representation algorithms for independence of prior information and avoidance of the off-grid problem.
作者
冯明月
何明浩
韩俊
郁春来
FENG Mingyue HE Minghao HAN Jun YU Chunlai(Air Force Early Warning Academy, Wuhan 430019, China)
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2017年第9期1145-1152,共8页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金(61401504)
军内计划科研项目(2015×××)
湖北省自然科学基金(2016CFB288)资助
关键词
到达角估计
协方差拟合
高分辨
旋转不变子空间信号参数估计算法
direction of arrival(DOA)estimation
covariance fitting
high resolution
estimation of signal parameters by rotational invariance technique(ESPRIT)