期刊文献+

基于MSET的电站风机故障预警技术研究 被引量:17

Research on Early Fault Warning Technology of Fan in Power Plant based on MSET Method
原文传递
导出
摘要 为了对电站风机进行故障预警并判断故障类型,在改进过程记忆矩阵构造的基础上进行MSET(多元状态估计)模型预测。利用AHP(层次分析法)求得各监测参数对风机故障预警作用的权重系数,并应用到相似度函数中,得到风机的相似度序列。利用滑动窗口法确定预警阈值,当发出预警信号后,分析各监测参数实际值和估计值间的相对误差,以此追溯风机的可能故障点。利用某电厂引风机数据进行故障模拟仿真,结果表明该方法能及时捕捉到风机异常并在追溯可能故障点的同时对故障类型进行判断。 In order to realize the early fault warning and estimate the fault type of fans in power plant,MSET(multivariate state estimation technique) model prediction was employed based on the improvement of process memory matrix. The weight coefficient of each monitoring parameter for fan early fault warning was calculated by AHP(analytic hierarchy process) and the results were applied to compute similarity sequence of the fans based on similarity function. Sliding window method was used to determine the warning threshold. The possible fault point of fans was determined by analyzing the relative error between actual value and estimated value when early warning signal was received. The actual data of induced draft fan was used to simulate faults. The results showed that the method proposed in this paper can identify the fault in time and determine the possible fault point and judge the type of failure.
出处 《热能动力工程》 CAS CSCD 北大核心 2017年第9期63-68,共6页 Journal of Engineering for Thermal Energy and Power
基金 中央高校基本科研业务费专项资金资助(2016MS47)
关键词 多元状态估计 层次分析 相似度 滑动窗口 故障预警 故障点 multivariate state estimation technique analytic hierarchy process similarity sliding window early fault warning fault point
  • 相关文献

参考文献11

二级参考文献80

共引文献220

同被引文献123

引证文献17

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部