期刊文献+

基于图像空间金字塔SURF-BoW的步态识别 被引量:3

Gait Recognition Based on SURF-BoW of Image Space Pyramid
下载PDF
导出
摘要 在步态识别中,衣着的变化易降低步态识别效果。为此,提出一种保留步态特征空间分布信息的步态识别方法。提取步态能量图像各级空间金字塔网格的加速鲁棒特征,采用偏最小二乘空间金字塔表示方法对各自级层的特征加权后进行聚类,构建词袋模型,用该模型统计直方图表征步态特征。使用直方图相交核支持向量机在CASIA步态数据库进行实验,结果表明,该方法具有较好的识别效果,平均识别率优于四元数小波变换、掩模能量图、局部二值模式和局部纹理分析步态识别方法。 In gait recognition,the performance is easily weakened by the change of clothing. In this respect,a gait recognition method is proposed by preserving the space distribution information of gait features. The Speeded-Up Robust Features( SURF) are extracted from each mesh at all levels of image spatial pyramid of gait energy image. The Partial least squares Spatial Pyramid Representation( PlsSPR) method is used to represent the weight of characteristics of each level to construct Bag of Words( BoW) and the gait feature is expressed by its statistic histogram. The Histogram Intersection Kernel Support Vector Machine( HIKSVM) is tested on CASIA gait database and the results show that the method presented has better recognition performance and the average recognition rate is significantly higher than gait recognition methods through quaternion wavelet transform,mask energy image,local binary patterns and local texture analysis.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第9期270-275,共6页 Computer Engineering
基金 国家自然科学基金(61303132) 吉林省教育厅"十三五"科学研究规划项目(吉教科合字[2016]第349号)
关键词 步态能量图像 图像空间金字塔 加速鲁棒特征 词袋 直方图 gait energy image image space pyramid Speeded-Up Robust Features(SURF) Bag of Words(BoW) histogram
  • 相关文献

参考文献3

二级参考文献37

  • 1Lowe D G.Distinctive Image Features from Scale Invariant KeypointslJ].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 2Mikolajczyk K,Schmid C.A Performance Evaluation of Local Descriptors[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630. 被引量:1
  • 3Ke Yan,Sukthankar R.PCA-SIFT:A More Distinctive Representation for Local Image Descriptors[C] //Proc.of 2004 IEEE Conf.on Computer Vision and Patten Recognition.[S.l.] :IEEE Press,2004. 被引量:1
  • 4Bay H.Surf:Speeded up Robust Features[C] //Proc.of the 9th European Conf.on Computer Vision.[S.l.] :IEEE Press,2006. 被引量:1
  • 5ZHANG Y Y,WU X J,RUAN Q Q.Combining procrustes shape analysis and shape context descriptor for silhouette-based gaitrecognition. Electronics Letters . 2009 被引量:1
  • 6Wang, L,Ning, H,Tan, T,Hu, W.Fusion of static and dynamic body biometrics for gait recognition. IEEE, Transactions on Circuits and Systems for Video Technology . 2004 被引量:1
  • 7Han, J,Bhanu, B.Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2006 被引量:1
  • 8Chen C,Liang J,Zhao H,Hu H,Tian J.Frame Difference Energy Image for Gait Recognition with Incomplete Silhouettes. Pattern Recognition . 2009 被引量:1
  • 9LEE H,HONG S,NIZAMI I F,et al.A noise robust gait representation:Motion energy image. International Journal ofControl,Automation and Systems . 2009 被引量:1
  • 10Lee H,Hong S,Kim E.Neural network ensemble with probabilistic fusion and its application to gait recognition. Neurocomputing . 2009 被引量:1

共引文献32

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部