期刊文献+

基于数据场和密度聚类的高分辨率影像居民区提取 被引量:1

Residential area extraction for high resolution remote sensing image based on data field and density clustering
下载PDF
导出
摘要 数据场通过模拟物理场中对象间的相互作用,来描述数据对象间的相互作用关系。数据场中的势值高低反映对象间相关程度,故在遥感影像中可用数据场来刻画像元间的空间相关性特征。提出了一种基于数据场和密度聚类的高分辨率居民区有效提取的方法。首先,利用数据场计算遥感影像的势值特征图像;然后,对势值图像进行分水岭分割,提取分割所得对象块的形心;最后,对形心进行基于密度的聚类,从而实现居民区提取。实验结果表明,基于此方法进行高分辨率遥感影像的居民区提取相对于传统方法具有更好的鲁棒性和高效性。 Data field can describe the correlation between data objects,and is a simulation of interaction between particles in physical field. Potential value of a data object in data field can effectively represent the spatial interactions of its neighborhoods,and it can do so for pixels in high resolution remote-sensing image. In this paper,the authors propose a method for residential area extraction from high resolution remote-sensing image using data field and density clustering. The major steps are as follows: the generating of a high resolution remote-sensing image data field; the calculation if potential value for each pixel in this field to obtain a new feature image;the segmentation of the feature image via watershed segmentation,and the calculation of centroids of segmentation results; the clustering of all the centroids into different clusters based on the density,with the extracted residential area composed of target clusters. Compared with existing relative methods of residential areas extraction for high resolution remote-sensing images,the experimental results suggest that the presented method is robust and efficient.
出处 《国土资源遥感》 CSCD 北大核心 2017年第3期92-97,共6页 Remote Sensing for Land & Resources
基金 国家重点基础研究发展计划(973)项目"高分辨率遥感影像的目标特征描述与数学建模"(编号:2012CB719903) 重庆市国土房管局科技计划项目"基于图像识别技术的国家高分辨率遥感数据分析应用方法研究"(编号:CQGT-KJ-2014032)共同资助
关键词 数据场 空间相关性 密度聚类 高分辨率遥感影像 居民区提取 data field spatial correlation density clustering high resolution remote-sensing image residential areas extraction
  • 相关文献

参考文献4

二级参考文献28

  • 1戴晓军,淦文燕,李德毅.基于数据场的图像数据挖掘研究[J].计算机工程与应用,2004,40(26):41-43. 被引量:16
  • 2李德毅 王晔 吕辉军.知识发现机理研究[A]..中国人工智能进展[C].,2001.314-325. 被引量:2
  • 3冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003.. 被引量:136
  • 4李兴生.基于云模型和数据场的分类和聚类挖掘研究[D].南京:解放军理工大学,2003 被引量:15
  • 5李德毅,杜鹢.不确定人工智能[M].北京:国防工业出版社,2005. 被引量:4
  • 6赵卫伟.数据场聚类及其实现[D].北京:中国人民解放军理工大学.2003. 被引量:2
  • 7BENEDIKTSSON J A, PESARESI M, ARNASON K. Classification and feature extraction for remote sensing images from built-up areas based on morphological transformations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1940-1949. 被引量:1
  • 8WEIGL K, GIRAUDON G, BERTHOD M. Application of projection learning to the detection of builtup areas in spot satellite images [RJ. Rapports de recherche-INRIA, 1993. 被引量:1
  • 9FANG W, CHAO W, HONG Z. Residential area information extraction by combining China airborne SAR and optical images [C]/ /IEEE International Geoscience and Remote Sensing Symposium, 2004. 被引量:1
  • 10ZHONG P, WANG R. A multiple conditional random fields ensemble model for built-up area detection in remote sensing optical images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 3978-3988. 被引量:1

共引文献22

同被引文献36

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部