期刊文献+

飞行器动态滑翔的受力平衡状态 被引量:1

Force balance in dynamic soaring of aerial vehicle
下载PDF
导出
摘要 为了研究动态滑翔的物理本质,从受力平衡的角度出发,根据物理定律推导平衡方程,从数学上求解出方程解集构成的平衡曲线。以信天翁和某小型无人机在不同风梯度下滑翔为例对平衡曲线进行仿真。分析和仿真结果表明:平衡曲线是满足受力平衡的所有速度状态的集合,由上升和下降两个分支构成;上升分支只有当风梯度足够大时才存在,是动态滑翔的关键。 To clarify the physical essential,a perspective of force balance to dynamic soaring was put forward. Equilibrium equations were derived according to physical laws. The solution of the equations solved mathematically formed a curve. Simulations of the curve were made in the cases of an albatross and an unmanned air vehicle in different wind gradients for instances. The results of analysis and simulation indicate that the curve is the velocity set that satisfies the equilibrium equations; the curve consists of a climbing branch and a diving one; the climbing branch exists only if the gradient is sufficiently large,and it is critical to dynamic soaring.
作者 单上求 侯中喜 王鹏 郭正 SHAN Shangqiu HOU Zhongxi WANG Peng GUO Zheng(College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2017年第4期15-20,共6页 Journal of National University of Defense Technology
基金 国家863计划资助项目(2014AA7054035)
关键词 动态滑翔 无动力飞行 风梯度 受力平衡 无人机 dynamic soaring effortless flight wind gradient force balance unmanned air vehicle
  • 相关文献

参考文献2

二级参考文献31

  • 1Traugott J, Holzapfel F, Sachs G. Conceptual approach for precise relative positioning with miniaturized GPS loggers and experimental results [ J ]. North Atlantic Treaty Organization, 2010, RTO - EN - SET - 116:4 - 24. 被引量:1
  • 2Rayleigh J W S. The soaring of birds[J]. Nature, 1883, 27 ( 1 ) :534 - 535. 被引量:1
  • 3Barnes P, Fishman R , TervamakiJ. Electric UAV using regenerative soaring and solar power [ R ]. San Francisco: Zero, 2013. 被引量:1
  • 4Mark B E, Boslough. Autonomous dynamic soaring platform for distributed mobile sensor arrays [ R ]. Albuquerque: Sandia National Laboratories, 2002. 被引量:1
  • 5Lawrance R J, SukkariehS. A guidance and control strategy for dynamic soaring with a gliding UAV [ C ]//Proceedings of IEEE international Conference on Robotics and Automation, Kobe, Japan, 2009 : 1 - 6. 被引量:1
  • 6LangelaanJ W, Spletzer J, Montella C, et al. Wind field estimation for autonomous dynamic soaring[ C ]//Proceedings of IEEE International Conference on Robotics and Automation, River Centre, Saint Paul, Minnesota, USA, 2012:16-22. 被引量:1
  • 7Zhao Y J. Optimal patterns of glider dynamic soaring [ J ]. Optimal Control Applications and Methods, 2004, 25 : 67 -89. 被引量:1
  • 8Deittert M, Richards A, Toomer C A , et al. Engineless unmanned aerial vehicle propulsion by dynamic soaring [ J ]. Journal of Guidance, Control, and Dynamics, 2009, 32 (5) : 1446 - 1457. 被引量:1
  • 9Sukumar P P, Selig M S. Dynamic soaring of sailplanes over open fields [ C ]//Proceedings of 28th AIAA Applied Aerodynamics Conference, Chicago, IL, 2010:1-22. 被引量:1
  • 10Bower G C. Boundary layer dynamic soaring for autonomous aircraft: design and validation [ D ]. Stanford : Stanford University, 2011. 被引量:1

共引文献9

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部