摘要
通过在环R中引进n-核对合元与n-正规元的概念,给出n-核对合元的刻画及Moore-Penrose可逆的n-正规元的性质.结果表明,若a∈R~■,m,n∈N,则a是n-核对合元当且仅当(a~*)~n=(a~#)~n、当且仅当(a~*)~na^m=(a~■)~na^m、当且仅当(a~*)~na^m=a^m(a~■)~n、当且仅当a^m(a~*)~n=(a~■)~na^m.
By introducing the concepts of n-core involutory elements and n-normal elements in ring R,we gave characterizations for n-core involutory elements and properties of Moore-Penrose invertible n-normal elements.The results show that if a∈R^ and m,n∈N,then ais an n-core involutory element if and only if(a^*)^n=(a^#)^n,if and only if(a^*)^na^m=(a^ )^na^m,if and only if(a^*)^na^m=a^m(a^ )^n,if and only if a^m(a^*)^n=(a^ )^na^m.
作者
郭丽
邹红林
GUO Li ZOU Honglin(School of Mathematics, Southeast University, Nanjing 210096, China School of Mathematics and Statistics, Beihua University, Jilin 132013, J ilin Province, China School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, Hubei Province, China)
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2017年第5期1163-1166,共4页
Journal of Jilin University:Science Edition
基金
吉林省自然科学基金(批准号:20160101264JC)
关键词
n-核对合元
n-正规元
核逆
EP元
n-core involutory element
n-normal element
core inverse
EP element