期刊文献+

两轴快速反射镜视轴指向与速率补偿分析 被引量:6

Analysis of LOS pointing and rate compensation for two-axis FSM
下载PDF
导出
摘要 为精确控制两轴快速反射镜的视轴指向,根据矢量形式斯涅尔定律建立了反射镜转角与视轴指向角间的运动学耦合方程。通过非线性校正实现视轴指向方程解耦,对于行程为±20mrad的两轴快速反射镜在入射角为45°时视轴指向误差小于8μrad,相比线性近似,视轴指向精度提高75倍。为保证视轴稳定,根据矢量速率方程推导出补偿基座扰动角速率的反射镜转动角速率方程,通过对三角函数进行泰勒展开,舍去高阶项,得到快反镜转动角速率近似计算公式,分析了不同入射角下的残余视轴转动角速率,得出视轴转动角速率ω_(Ly)残差远大于ω_(Lz),且入射角β_i为45°时残差最小,此时残余视轴转动角速率与基座扰动角速率之比小于0.164%,可满足计算精度要求。为快速反射镜伺服控制系统位置、速度指令生成提供理论依据。 In order to control line-of-sight(LOS) pointing with two-axis fast-steering mirror(FSM) accurately, kinematic equations was set to describe the relationship between LOS pointing and angular displacement of FSM deriving from Snell's law of reflection. LOS pointing equations were decoupled with non-linear correction. LOS pointing error was less than 8μrad for two-axis FSM whose tilt angles were both ±20 mrad with beam incidence angle equaling to 45°. LOS pointing accuracy rose 75 times compared with linear approximation. To hold the LOS stationary, rate equations were established in terms of vector rate synthesis to compensate the angular rate of the mounted vehicle in inertial space. Angular rate equations for FSM were simplified via Taylor expansion and high order truncation. The residual angular rate of LOS with different beam incidence angles was calculated, which indicated that the residual error ofωLy was far greater thanωLz. The ratio between residual LOS angular rate and angular rate of mounted vehicle was minimal and less than 0.164% when beam incidence angle was 45°, which satisfied the accuracy requirements. The equations deduced suppliy theoretic reference of position and velocity command generation for FSM control system.
出处 《红外与激光工程》 EI CSCD 北大核心 2017年第9期252-258,共7页 Infrared and Laser Engineering
基金 国家863计划(Y3471SR140) 国家自然科学基金青年科学基金(61405192)
关键词 两轴快速反射镜 运动耦合 视轴指向 速率补偿 非线性校正 two-axis FSM kinematics couple LOS pointing rate compensation non-linear correction
  • 相关文献

参考文献11

二级参考文献78

共引文献116

同被引文献43

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部