期刊文献+

基于非参数回归分析的工业负荷异常值识别与修正方法 被引量:22

Outlier Detection and Correction Method for Industrial Loads Based on Nonparametric Regression Analysis
下载PDF
导出
摘要 工业负荷数据记录了用户的用电模式以及电量需求水平等重要信息,但是会因为干扰而导致记录数据中掺杂有异常值。针对上述问题,文中提出了利用非参数回归理论对工业用户负荷异常值展开辨析和更正。首先,考虑负荷数据时序相关特性,采用统计模糊矩阵分类法,对工业用户负荷进行用电模式分类,将负荷数据分为基础用电模式数据集和特殊用电模式数据集。然后,利用基础用电模式数据集,考虑各时刻的负荷数值分布情况,通过非参数回归分析方法提取中心负荷向量,进而构造异常数据域,对负荷异常值进行识别。最后,在常规加权均值法的基础上,引入负荷水平映射关系,完成对负荷异常值的修正。算例采用实际工业负荷数据进行测试,结果表明了所提方法的准确性。 In a power system,the information on power consumption patterns and electricity demand levels is recorded in industrial load curves,part of which,however,will be abnormal because of unexpected interference.Therefore,a method based on nonparametric regression theory is proposed to detect and correct the outliers in industrial load curves.First,for the lateral continuity of load data in time sequence,a fuzzy statistical method is employed for classifying the load curves by consumption patterns.The load data sets are classified into two data sets,one is of the basic consumption patterns and the other of special patterns.Then,considering the longitudinal continuity of load values in various time intervals,the nonparametric regression analysis method is used to estimate the center vector based on the data set of basic patterns.With the center vector,the outlier boundaries are achieved to detect all the outliers.Finally,the mapping of load levels is modeled to carry out the outlier correction in accordance with the weighted average method.The actual industrial load data are adopted to test the proposed method.The result shows the effectiveness of the proposed method.
出处 《电力系统自动化》 EI CSCD 北大核心 2017年第18期53-59,共7页 Automation of Electric Power Systems
基金 陕西省重点研发计划重点产业创新链资助项目(2017ZDCXL-GY-02-03)~~
关键词 负荷管理 模式分类 异常数据识别 非参数回归分析 load management pattern classification outlier detection nonparametric regression analysis
  • 相关文献

参考文献9

二级参考文献81

共引文献163

同被引文献254

引证文献22

二级引证文献279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部