期刊文献+

改进TLBO的相关反馈图像检索方法 被引量:2

Image retrieval method with relevance feedback based on improved teaching-learning-based optimization algorithm
下载PDF
导出
摘要 针对当前基于进化算法的相关反馈图像检索方法无法很好地结合用户偏好信息和设置参数过多的问题,提出一种基于改进教与学优化的相关反馈图像检索方法。根据图像检索问题的特定环境,对教与学优化算法进行了一系列改进:首先,结合最近邻分类法构造适应度函数的约束条件,使之更好地反映用户偏好信息;其次,通过在教阶段将相关图像集的中心图像作为教师以及在学阶段将相关图像作为学员学习的对象,使算法快速收敛到相关图像区域;最后,结合约束处理技术Deb准则进行学员的选择操作。将该算法与目前效果优异的3种基于进化算法的相关反馈技术在两套标准图像测试集上进行对比。结果表明,所提算法相较于另外3种算法具有明显的优势,能更好地结合用户偏好信息提高图像检索性能。 Since the current content-based image retrieval with the relevance feedback (RF) methods based on the evolutionary algorithm could not well combine the user bias and need to set many parameters, a relevance feedback image retrieval method based on the improved teachingqearning-based optimization algorithm (ITLBO-RF) is proposed. Considering the situation of image retrieval, a series of improvements are implemen- ted. Firstly, combining with the nearest-neighbor approach, the fitness function with constraint is proposed for better reflecting the user bias. Secondly, the center of the relevant images is regarded as the teacher in the teacher phase and the relevant image is regarded as the learning object in the learner phase, which make the al- gorithm converge fast to the region of relevant images. Finally, the selection operation of students based on Deb standards is conducted. ITLBO-RF is compared with three state-of-the-art RFs based on the evolutionary algo- rithm on two benchmark images. The results show that ITLBO-RF has obvious advantage in comparison with other three algorithms, increases the performance of image retrieval and can better meet the user needs of image retrieval.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第10期2359-2367,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(61175126)资助课题
关键词 基于内容的图像检索 相关反馈 教与学优化算法 Deb准则 content-based image retrieval relevance feedback teaching-learning based optimization (TLBO) Deb standards
  • 相关文献

参考文献5

二级参考文献142

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:223
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3Rui Y,Huang T S,Mehrotra S.Content-based image retrieval with relevance feedback in MARS .Proceedings of IEEE International Conference on Image Processing .Santa Barbara,CA,USA:IEEE Computer Society,1997.815-818. 被引量:1
  • 4van Rijsbergen C J.Information Retrieval[M].London:Butterworths,1979. 被引量:1
  • 5Picard R W,Minka T P,Szummer M.Modeling user subjectivity in image libraries .Proceedings of IEEE International Conference on Image Processing .Lausanne,Switzerland:IEEE,1996.777-780. 被引量:1
  • 6Vasconcelos N,Lippman A.Learning from user feedback in image retrieval systems .Proceedings of the Neural Information Processing Systems .Breckenridge,CO:MIT Press,1999. 被引量:1
  • 7Su Z,Zhang H,Ma S.Relevant feedback using a Bayesian classifier in content-based image retrieval .Proceedings of the SPIE Storage and Retrieval for Media Databases .San Jose:SPIE Press,2001.97-106. 被引量:1
  • 8Wu J,Fu Y,Lu M.Bayesian active learning in retrieval feedback for image retrieval .Proceedings of 2nd international symposium on intelligent information technology application .Shanghai,China:Inst.of Elec,2008.371-375. 被引量:1
  • 9Deselaers T,Paredes R,Vidal E,Hermann N.Learning weighted distances for relevance feedback in image retrieval .Proceedings of 19th International Conference on Pattern Recognition .Tampa,FL,United stats,2008.1-4. 被引量:1
  • 10Grigorova A,De Natale F G B,Dagli C,Huang T S.Content-based image retrieval by feature adaption and relevance feedback[J].IEEE transactions on multimedia,2007,9(6):1183-1192. 被引量:1

共引文献114

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部