期刊文献+

港口集装箱号图像倾斜校正识别仿真 被引量:4

Port Container Number Image Tilt Correction Recognition Simulation
下载PDF
导出
摘要 在港口智能集装箱号识别系统中,为准确识别集装箱编号,需对采集的倾斜箱号图像校正。针对传统校正中,由于干扰字符的存在导致图像校正精度低、算法复杂导致处理时间长等问题,提出一种基于分块质心和旋转投影的倾斜校正方法。水平倾斜角检测采用分块质心法,即对图像分块得到无干扰区,计算每列像素质心并用最小二乘拟合直线得到水平倾斜角,逐行扫描去除干扰字符,垂直倾斜角检测采用旋转投影法,依据设定的步长旋转并投影,统计最大投影值,对应的角度为垂直倾斜角。通过仿真分析得出:水平和垂直角度检测都能精确在2°以内且运行时间较传统方法提高了22.8%。与其它方法相比在校正精度上和校正是时间上均有优势,是一种有效可行的集装箱号校正方法。 An image tilt eorrection method of container number is proposed based on block center of mass and ro- tation projection. The block center of mass is used to detect level tilt angle, and the non-interference region of image block is obtained. The center of mass of pixel in each column is calculated, and least square fit line is used to obtain the level tilt angle, then progressive scan is carried out to eliminate interference character. The rotation projection is used to detect vertical tilt angle. The rotation and projection is carried out according to the given step length and counted maximum projection value. Corresponding angle is the vertical tih angle. Simulation results show that the de- tection precision of horizontal and vertical angle is within 2°. The method improves operation time by 22.8% compared with traditional method and has advantage in correction precision and correction time compared with other methods. It is an effective and feasible method for correction of container number.
出处 《计算机仿真》 北大核心 2017年第9期230-234,253,共6页 Computer Simulation
关键词 倾斜校正 分块质心 最小二乘法 行扫描 旋转投影 Tilt correction Pixel center of mass Least squares method Line scan Rotation projection
  • 相关文献

参考文献10

二级参考文献48

  • 1陈前荣,陆启生,成礼智.基于方向微分的运动模糊方向鉴别[J].中国图象图形学报(A辑),2005,10(5):590-595. 被引量:41
  • 2解同信.最小二乘法求作拟合直线[J].北京工业职业技术学院学报,2006,5(3):5-7. 被引量:30
  • 3刘晓明,王云柯,廖欣,欧静兰.一种新的车牌字符图像的提取方法[J].计算机应用,2007,27(B06):113-115. 被引量:3
  • 4Cannon M. Blind deconvolution of spatially invariant image blurs with phase [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976, 24( 1 ) :58-63. 被引量:1
  • 5Fabian R, Malah D. Robust identification of motion and out-of- focus blur parameters from blurred and noisy image [ J]. CVGIP: Graphical, Models and Image Processing, 1991,53 (5): 403- 412. 被引量:1
  • 6Ji H, Liu C Q. Motion blur identification from image gradients [C ]// Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA : IEEE Computer Society, 2008 : 1-8. 被引量:1
  • 7Krahmer F, Lin Y, McAdoo B, et al. Blind image deconvolu- tion : motion blur estimation [ D 1. Minnesota, USA : University of Minnesota, 2006. 被引量:1
  • 8Yitzaky Y, Mor I, Lantzman A, et al. Direct method for restora- tion of motion-blurred images [ J]. Journal of Optical Society of American A, 1998, 15(6): 1512-1519. 被引量:1
  • 9Yitzaky Y, Kopeika S. Vibrated image restoration from a single frame [J]. SPIE, 1999,3808:603-613. 被引量:1
  • 10Yitzaky Y, Milberg R, Yohaev S, et al. Comparison of direct blind deconvolution methods for motion-blurred images [ J ]. Applied Optics, 1999, 38(20) :4325-4332. 被引量:1

共引文献47

同被引文献22

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部