摘要
确定了一类中心循环的有限p-群G的自同构群.设G=X_3(p^m)^(*n)*Z_(p^(m+r)),其中m≥1,n≥1和r≥0,并且X_3(p^m)=<x,y|x^(p^m)=y^(p^m)=1,[x,y]^(p^m)=1,[x,[x,y]]=[y,[x,y]]=1>.Aut_nG表示Aut G中平凡地作用在N上的元素形成的正规子群,其中G'≤N≤ζG,|N|=p^(m+s),0≤s≤r,则(i)如果p是一个奇素数,那么AutG/Aut_nG≌Z_(p^((m+s-1)(p-1))),Aut_nG/InnG≌Sp(2n,Z_(p^m))×Z_(p^(r-s)).(ii)如果p=2,那么AutG/Aut_nG≌H,其中H=1(当m+s=1时)或者Z_(2^(m+s-2))×Z_2(当m+s≥2时).进一步地,Aut_nG/InnG≌K×L,其中K=Sp(2n,Z_(2~m))(当r>0时)或者O(2n,Z_(2~m))(当r=0时),L=Z_(2^(r-1))×Z_2(当m=1,s=0,r≥1时)或者Z_(2^(r-s)).
The automorphism group of a class of finite p-groups with cyclic center is determined. Let G = X3(p^m)^*n*Zp^m+r),where m≥1,n≥1 ,r≥0,and X_3(p^m)=〈x,y{x^p^m=y^p^m=1.{x,y}^p^m=1,{x,{x,y}}={y,{x,y}}=1〉.Let Autn G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on N, whereG'≤N≤ζG,|N|=p^(m+s),0≤s≤r.Then (i) If p is odd, then Aut G/Autn G≌Z_(p^((m+s-1)(p-1)))and AutnG/Inn G G/InnG≌Sp(2n,Z_(p^m))×Z_(p^r-s) (ii) If p = 2, then AutG/Aut^G -~ H, where H = 1 (if m + s = 1) or Z_(2^m+s-2)×Z_2(ifm+s≥2).Furthermore, AutnG/Inn G≌K×L,where K = Sp(2n, Z2^m) (if r 〉 0) or O(2n,Z_(2^m))(ifr=O),L=Z2r-1 ×Z2 (ifm=l, s=0, r≥l) or Z2r-s.
出处
《数学年刊(A辑)》
CSCD
北大核心
2017年第2期191-200,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11301150
No.11371124)
河南省自然科学基金(No.142300410134
No.162300410066)的资助
关键词
有限P-群
循环中心
自同构群
Finite p-groups, Cyclic centers, Automorphism groups