期刊文献+

基于消息传递的大规模多用户MIMO低复杂度的检测算法

A low complexity detection algorithm for large scale multiuser MIMO based on message passing
下载PDF
导出
摘要 针对大规模多用户多输入多输出(MIMO)系统中基站端检测复杂度高的问题,提出了一种低复杂度、基于强制收敛的变量节点全信息高斯消息传播迭代检测(VFI-GMPID-FC)算法。首先对传统的GMPID算法进行改进,得到VFI-GMPID算法,VFI-GMPID算法的检测性能逼近最小均方误差检测(MMSE)算法,但复杂度要大大低于MMSE算法。然后结合强制收敛思想和VFI-GMPID,提出VFI-GMPID-FC算法,进一步降低算法复杂度,提升检测效率。最后通过仿真结果表明,所提算法在保证检测性能的同时,能有效地降低算法的复杂度。 According to the problem of high complexity of base station detection in large scale multinser multiple input multiple output (MIMO) system, a low complexity multiuser variable node full information Gaussian message passing iterative detection algorithm based on forced convergence (VFI-GMPID-FC) was proposed. Firstly, the traditional Gaus- sian message passing iterative detection (GMP1D) algorithm was improved to obtain VFI-GMPID algorithm, the detec- tion performance of the VFI-GMPID algorithm approximates the minimum mean square error detection (MMSE) algo- rithm, but the complexity was considerably less than the MMSE algorithm. Then, the VFI-GMPID-FC algorithm was proposed to reduce the complexity of the algorithm and improve the detection efficiency. Finally, the simulation results show that the proposed algorithm can effectively reduce the algorithm complexity while ensuring the detection performance.
出处 《电信科学》 北大核心 2017年第9期1-9,共9页 Telecommunications Science
关键词 大规模多用户MIMO 高斯消息传递迭代检测 强制收敛 低复杂度 large scale multiuser MIMO, Gaussian message passing iterative detection, forced convergence, low complexity
  • 相关文献

参考文献2

二级参考文献13

  • 13 rd Generation Partnership Project.TR 25.913-900.Requirements for Evolved UTRA(E-UTRA)and Evolved UTRAN(E-UTRAN),2009. 被引量:1
  • 23rd Generation Partnership Project.TR 36.912-900.Feasibility Study for Further a Advancements for E-UTRA(LTE-Advanced),2011. 被引量:1
  • 3Marzetta L T.Noncooperative cellular wireless with unlimited numbers of base station antennas.IEEE Transactions on Wireless Communications,2010,9(11):3590-3600. 被引量:1
  • 4Rusek F,Persson D,Lau B K,et al.Scaling up MIMO:opportunities and challenges with very large arrays.Signal Processing Magazine,2013,30(1):40-60. 被引量:1
  • 5Lu L,Li G Y,Swindlehurst L A,et al.An overview of massive MIMO:benefits and challenges.IEEE Journal of Selected Topics in Signal Processing,2014,8(5):742-758. 被引量:1
  • 6Larsson G E,Edfors O,Tufvesson F,et al.Massive MIMO for next generation wireless systems.IEEE Communications Magazine,2014,52(2):186-195. 被引量:1
  • 7Adhikary A,Nam J,Ahn J,et al.Joint spatial division and multiplexing-the large-scale array regime.IEEE Transactions on Information Theory,2013,59(10):6441-6463. 被引量:1
  • 8Sun C,Gao X Q,Jin S,et al.Beam division multiple access transmission for massive MIMO.IEEE Transactions on Communications,revised. 被引量:1
  • 9Nam J,Ahn J,Adhikary A,et al.Joint spatial division and multiplexing:realizing massive MIMO gains with limited channel state information.Proceedings of Information Sciences and Systems(CISS),Princeton,New Jersey,USA,2012:1-6. 被引量:1
  • 10Nam J,Adhikary A,Ahn J,et al.Joint spatial division and multiplexing:opportunistic beamforming,user grouping and simplified downlink scheduling.IEEE Journal of Selected Topics in Signal Processing,2014,8(5):876-890. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部