期刊文献+

基于双层改进粒子群算法含DG配电网的重构策略研究 被引量:3

Reconfiguration Strategy of Distribution Network with DG Based on Double Layer Improved Particle Swarm Optimization
下载PDF
导出
摘要 为有效、快速、稳定地实现含分布式电源的配电网重构,在简化配电网拓扑结构的基础上,提出一种双层改进粒子群算法(double layer improved particle swarm optimization,DLIPSO)。在开关组合优化过程中,为避免"组合爆炸"问题,对配电网实际支路进行支路集划分,并进行0/1编码,缩短了编码维数,减少不可行解的产生。采用外层改进粒子群算法优化支路集组合,根据Sigmoid函数确定支路集的断开和闭合;提出内层改进粒子群算法对断开支路集内的实际支路进行优化,通过比较法确定集合内实际断开的支路;网络重构中分布式电源的加入降低了网损,提高了对节点电压的支撑能力。对IEEE 69节点配电系统进行仿真计算,结果表明所提算法能够有效搜索到最优开关组合且收敛性好。 For an effective, fast and stable implementation of reconfiguration of the distribution network with distributed generation (DG), a double layer improved particle swarm optimization (DIPSO) is proposed in this paper based on the simplified topology of distribution network. In the network switch combination optimization process, to avoid the combination explosion problem, the actual branch of distribution network is divided into the branch set, and 0/1 code is carried out, which shortens the coding dimension and reduces the generation of the infeasible solution. Optimal search of branch sets is conducted by means of external layer improved binary particle swarm optimization, to determine the branch set open or closed according to Sigmoid function. Selection and optimization of the actual branch of the broken branch set are made by means of inner layer improved particle swarm optimization, and the actual broken branch is determined by comparative law in the set. In the network reconfiguration, the distributed power supply reduces the network loss and improves the support capacity of the node voltage. The simulation results of IEEE 69 bus distribution system show that the proposed algorithm can effectively search the optimal switch combination and has good convergence.
出处 《电网与清洁能源》 北大核心 2017年第7期39-46,共8页 Power System and Clean Energy
基金 国家自然科学基金项目(51577049) 国家电网公司总部科技项目:配电网调控一体化系统建设模式与辅助分析关键技术研究及深化应用~~
关键词 分布式电源 配电网重构 双层改进粒子群算法 IEEE 69 distributed generation distribution network re- configuration double layer improved particle swarm optimization IEEE 69
  • 相关文献

参考文献20

二级参考文献245

共引文献1517

同被引文献34

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部