期刊文献+

有界线性算子的a-Weyl定理及亚循环性

A-Weyl's theorem and hypercyclic property for bounded linear operators
下载PDF
导出
摘要 设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.称T∈B(H)满足a-Weyl定理,若σ_a(T)\σ_(ea)(T)=π_(00)~a(T),其中,σ_a(T)和σ_(ea)(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱,π_(00)~a(T)={λ∈isoσ_a(T)∶0<dim N(T-λI)<∞}.通过定义新的谱集,给出了算子函数满足a-Weyl定理的判定方法,研究了当T为亚循环算子时,算子函数满足a-Weyl定理的充要条件. Let H be an infinite dimensional separable complex Hilbert space and B( H) be the algebra of all bounded linear operators on H. For T ∈ B( H),we call a-Weyl's theorem holds for T if σa( T) /σea( T) = π00^a( T),whereσa( T) and σea( T) denote the approximate point spectrum and essential approximate point spectrum respectively,and π00^a( T) = { λ ∈ isoσa( t) ∶ 0 dim N( T-λI) ∞ }. Using the new defined spectrum,we investigate a-Weyl's theorem for operator function. Meanwhile,we characterize the sufficient and necessary conditions for operator function satisfying a-Weyl's theorem if T is a hypercyclic operator.
作者 杨国增 孔莹莹 曹小红 Yang Guozeng Kong Yingying Cao Xiaohong() School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, Henan Province, P. R. China ) Shaanxi Normal University, Institute of Mathematics and Information Science, Xi'an 710062, Shaanxi Province, P. R. China)
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2017年第4期372-377,共6页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(11471200)~~
关键词 线性算子理论 a-Weyl定理 逼近点谱 亚循环算子 算子函数 FREDHOLM算子 谱集 Browder谱 linear operator theory a-Weyl's theorem approximate point spectrum hypercyclic operators operator function Fredholm operator spectrum set Browder spectrum
  • 相关文献

参考文献5

二级参考文献28

  • 1Weyl H. Uber beschrankte quadratische Formen, deren Differenz vollstetig ist [J]. Rendiconti del Circolo Matematico di Palermo, 1909, 27:373-392. 被引量:1
  • 2Harte R, Lee W Y. Another note on Weyl's theorem [J]. Transactions of the American Mathematical Society, 1997, 349:2115-2124. 被引量:1
  • 3Rakoczevic: V. Operators obeying a-Weyl's theorem[J]. Revue Roumaine de Mathématiques Pures et Appliqueées, 1989, 34(10):915-919. 被引量:1
  • 4Aiena P, Pena P. Variation on Weyl's theorem[J]. Journal of Mathematical Analysis and Applications,2006, 324:566-579. 被引量:1
  • 5Aiena P. Fredholm theory and local spectral theory, with applications to multiplier[M]. Netherlands: Kluwer Academic Publisher, 2004 : 110-112. 被引量:1
  • 6Grabiner S. Uniform ascent and descent of bounded operators[J]. Journal of the Mathematical Society of Japan, 1982, 34(2):317-337. 被引量:1
  • 7Berkani M, Sarih M. On semi B-Fredholm operators [J]. Glasgow Mathematical Journal, 2001, 43 (3): 457-465. 被引量:1
  • 8Berkani M. Index of B-Fredholm operators and Generalization of a Weyl theorem[J]. Proceedings of the American Mathematical Society, 2002, 130 ( 6 ): 1717-1723. 被引量:1
  • 9Oudghiri M. Weyl's and Browder's theorem for operators satisfying the SVEP [J]. Studia Mathematica, 2004, 163(1) :85-101. 被引量:1
  • 10Rakocevic V, Semi-Fredholm operator with finite ascent or descent and perturbations[J]. Proceedings of the American Mathematical Society, 1995, 23: 3823-3825. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部