摘要
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.称T∈B(H)满足a-Weyl定理,若σ_a(T)\σ_(ea)(T)=π_(00)~a(T),其中,σ_a(T)和σ_(ea)(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱,π_(00)~a(T)={λ∈isoσ_a(T)∶0<dim N(T-λI)<∞}.通过定义新的谱集,给出了算子函数满足a-Weyl定理的判定方法,研究了当T为亚循环算子时,算子函数满足a-Weyl定理的充要条件.
Let H be an infinite dimensional separable complex Hilbert space and B( H) be the algebra of all bounded linear operators on H. For T ∈ B( H),we call a-Weyl's theorem holds for T if σa( T) /σea( T) = π00^a( T),whereσa( T) and σea( T) denote the approximate point spectrum and essential approximate point spectrum respectively,and π00^a( T) = { λ ∈ isoσa( t) ∶ 0 dim N( T-λI) ∞ }. Using the new defined spectrum,we investigate a-Weyl's theorem for operator function. Meanwhile,we characterize the sufficient and necessary conditions for operator function satisfying a-Weyl's theorem if T is a hypercyclic operator.
作者
杨国增
孔莹莹
曹小红
Yang Guozeng Kong Yingying Cao Xiaohong() School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, Henan Province, P. R. China ) Shaanxi Normal University, Institute of Mathematics and Information Science, Xi'an 710062, Shaanxi Province, P. R. China)
出处
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2017年第4期372-377,共6页
Journal of Shenzhen University(Science and Engineering)
基金
国家自然科学基金资助项目(11471200)~~