摘要
基于弹性力学理论,采用Galerkin有限元数值离散化方法,编制Matlab有限元程序,数值模拟两条相互垂直裂缝干扰时的"应力阴影"分布状态,其主应力与主方向分布具有关于交点(坐标原点)的对称性特征.分析了流压比值、孔隙压力、缝面流压及水平应力差值等因素对两缝间主应力及主方向的影响,通过改进变排量施工、改变压裂液黏度、油气井开采降低孔隙压力和增大注入液量等工艺,发挥应力阴影效应的优点,增加复杂缝网形成的可能性.
Based on elasticity theory,we use numerical Galerkin finite element discretization method and implement Matlab finite element code to simulate "stress shadow"distributions of mutual orthogonal fractures. The principal stress and principal distributions have the symmetry characteristic on the intersection( coordinate origin). The relationships between stress shadow and flow pressure ratio,pore pressure,fluid pressure and horizontal stress contract are analyzed,respectively. By these techniques of variable displacement construction,changing the viscosity of the fracturing fluid,exploitation of oil and gas wells changing pump rate and fracturing fluid viscosity,reducing pore pressure and increasing the injection volume,taking the advantages of shadow effect,it is likely to produce a complex fracture network.
作者
汪道兵
周福建
葛洪魁
Sergio Zlotnik
杨向同
彭金龙
Wang Daobing Zhou Fujian Ge Hongkui Sergio Zlotnik Yang Xiangtong Peng Jinlong() Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing 102249, P. R. China ) School of Civil Engineering, Technical University of Catalonia, Barcelona E-08034, Spain ) Institute of Oil Production Engineering, Research Institute of Exploration & Development, PetroChina, Beijing 100083, P. R. China ) Tarim Oilfield Company, PetroChina, Kuerle 841000, Xinjiang Uygur Autonomous Region, P. R. China ) The Second Oil Extraction Plant of Daqing Oilfield Company Limited, PetroChina, Daqing 163414, Heilongjiang Province, P. R. China)
出处
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2017年第4期344-351,共8页
Journal of Shenzhen University(Science and Engineering)
基金
国家重点基础研究发展规划资助项目(2015CB250903)
国家自然科学基金资助项目(51490652)
"十三五"国家科技重大专项资助项目(2016ZX05030-005)
中国石油大学(北京)科研基金资助项目(2462016YXBS10)~~
关键词
应力干扰
缝网压裂
垂直裂缝
有限元方法
转向剂
可降解纤维
流体压力
流固耦合
线弹性力学
stress interference
fracture network fracturing
perpendicular crack
finite element method
diverting agent
degradable fiber
fluid pressure
fluid-solid coupling
linear elastic mechanics