期刊文献+

基于一种改进型线性增长模型的船舶流量预测 被引量:2

Ship flow prediction based on an improved linear growth model
下载PDF
导出
摘要 为了提高船舶流量预测精度,综合考虑交通需求、季节、气候等因素,通过分析船舶流量历史数据,在线性增长模型基础上,构建了考虑周期性波动因素的船舶流量预测改进模型,并运用贝叶斯估计和预测方法求解模型,提出了一种新的船舶流量预测方法.实例验证表明,与传统线性增长模型预测结果比较,新模型更符合船舶流量实际情况,月流量预测结果的平均绝对误差下降了3.56%,标准差下降了3.79%.因此,将该预测方法用于船舶流量预测是有效的. In order to improve prediction accuracy of ship flow,an improved linear growth model is developed to predict ship flow by taking into all periodic fluctuation factors,such as actual ship demand,seasonal changes,climate impact,and so on. Then,the Bayesian estimation and prediction are used to solve the new model,and ship flow is predicted using the historical data of ship flow. A case is analyzed to compare the prediction effect of the model,and the results show that,compared with the linear growth model,the prediction results of the improved model are more in line with the actual situation of ship flow. Besides,the mean absolute error of monthly ship flow decreases by 3. 56%,and the standard deviation decreases by 3. 79%. Therefore,the method is effective to predict ship flow.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2017年第4期531-536,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省高校哲学社会科学研究课题(2015JSB326)
关键词 船舶流量 周期性波动 线性增长模型 预测 ship flow periodic fluctuation linear growth model prediction
  • 相关文献

参考文献11

二级参考文献108

共引文献81

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部