期刊文献+

基于经验模态分解的单通道盲源分离算法 被引量:7

Single-channel blind source separation algorithm based on empirical mode decomposition
下载PDF
导出
摘要 为了提高单通道盲源分离性能,首先由单路信号利用经验模态分解得到一系列本征模函数分量组合成多路信号;其次针对存在模态混叠的本征模函数分量,提出利用信号周期性构造其多路信号,并利用独立分量分析消除模态混叠的有效方法;然后利用互相关性消除上述步骤所得到的多路信号中的虚假分量,并将剩余的分量信号与观测信号构成新的多路信号;最后利用Fast-ICA(fast-independent component analysis)算法分离得到源信号。仿真实验表明该算法能够有效分离源信号,分离性能优于目前已有的基于经验模态分解的单通道盲源分离算法。 In order to improve the performance of single channel blind source separation, this paper firstly applied the empirical mode decomposition to single-channel observation signal to obtain a series of intrinsic mode function and residue, which reconstructed multi-channel signals. Secondly, according to the existing mixed modes intrinsic mode function, it constructed the multi-channel signals by using the signal periodicity, and eliminated the modal mixing by using independent component analysis. And it cancelled out the false components of the above obtained multi-channel signals on the basis of correlation, then got the new multi-channel signals by the remaining signals and observed signal. Finally, it separated the source signals by using the Fast-ICA algorithm. The simulation results show that the algorithm can effectively separate the source signals, the separation performance is better than the existing single channel blind source separation algorithms based on empirical mode decomposition.
出处 《计算机应用研究》 CSCD 北大核心 2017年第10期3010-3012,共3页 Application Research of Computers
关键词 单通道盲源分离 独立分量分析 经验模态分解 本征模函数 模态混叠 single-channel blind source separation (SCBSS) independent component analysis (/CA) empirical mode decomposition (EMD) intrinsic mode function(IMF) mixed mode
  • 相关文献

参考文献11

二级参考文献113

  • 1高维成,刘伟,邹经湘.基于结构振动参数变化的损伤探测方法综述[J].振动与冲击,2004,23(4):1-7. 被引量:44
  • 2雷兢,刘石,李志宏,孙猛,刘靖.一种用于在线测量的电容层析成像图像重建算法[J].化工学报,2007,58(6):1421-1425. 被引量:6
  • 3张雪辉,王化祥.电容层析成像数字化系统设计[J].传感技术学报,2007,20(8):1826-1830. 被引量:6
  • 4Cichocki A and Amari S.Adaptive Blind Signal and Image Processing:Learning Algorithms and Application[M].New York:Wiley Press,2002:24-42. 被引量:1
  • 5Souloumiac A.Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations[J].IEEE Transactions on Signal Processing,2009,57(6):2222-2231. 被引量:1
  • 6Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634. 被引量:1
  • 7Vicente Z and Pierre C.Robust independent component annlysis by iterative maximization of the kurtosis contrast with algebraic optimal step size[J].IEEE Transactions on Neural Networks,2010,21(2):248-261. 被引量:1
  • 8Bell A and Sejnowski T.An information maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6):1129-1159. 被引量:1
  • 9Tang Y and Li J P.Normalized natural gradient in independent component analysis[J].Signal Processing,2010,90(9):2773-2777. 被引量:1
  • 10Ye J M,Jin H H,Lou S T,and You K J.An optimized EASI algorithm[J].Signal Processing,2009,89(3):333-338. 被引量:1

共引文献97

同被引文献45

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部