期刊文献+

Spark环境下基于频繁边的大规模单图采样算法 被引量:3

A Sampling Algorithm Based on Frequent Edges in Single Large-Scale Graph Under Spark
下载PDF
导出
摘要 随着社交网络的流行,对其进行频繁子图挖掘的需求越来越强烈.大数据时代的到来,社交网络规模不断扩大,频繁子图挖掘工作变得愈发困难.在实际应用中,往往并不需要精确地挖掘出频繁子图,采样的方法在保证一定准确率的前提下能够显著提高频繁子图挖掘的效率.现有采样算法大多是根据节点的度进行采样,不适用于频繁子图挖掘.提出了一种基于频繁边的采样算法DIMSARI(distributed Monte Carlo sampling algorithm based on random jump and graph induction),在蒙特卡罗算法的基础上增加了根据频繁边进行随机跳的操作,并对其结果进行了图感应操作,进一步增加了算法的准确性,并在理论上证明了该方法的无偏性.实验结果显示:使用DIMSARI算法采样后进行频繁子图挖掘,准确性比现有其他的采样算法有较大的提高,在不同的采样率下采样后的子图的节点度都保持更小的归一化均方偏差. With the popularity of social networks, the demand for its frequent subgraph mining becomes more intense. With the arrival of the era of big data, social networks have been expanding and frequent subgraph mining becomes increasingly difficult. In fact, it does not require to mine frequent subgraphs exactly in application, so sampling methods are adopted to improve the efficiency of mining frequent subgraphs under certain accuracy. Most existing sampling algorithms are not fit for frequent subgraph mining because they use vertex transfer or compute the topology of the original graph first which will take a lot of time. In this paper, we propose a new sampling algorithm named DIMSARI (distributed Monte Carlo sampling algorithm based on random jump and graph induction) based on frequent edge,and it runs on a distributed framework named Spark. This algorithm is created on the basis of the Monte Carlo algorithm meanwhile adding random jump. The results are added by subgraph induction step to promote the accuracy of the algorithm and prove that the algorithm is unbiased. The experiments show that the accuracy of frequent subgraph mining using DIMSARI algorithm has been greatly improved and at the same time the proposed algorithm only spends a little more time than other algorithms. The apex of sampling at different sampling rates after subgraphs has maintained a lower normalized mean square error.
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第9期1966-1978,共13页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61572266 61472194) 浙江省自然科学基金项目(Y16F020003) 宁波市自然科学基金项目(2017A610114)~~
关键词 采样 频繁子图 大规模单图 频繁边 SPARK sample frequent subgraph single large-scale graph frequent edge Spark
  • 相关文献

参考文献2

二级参考文献76

  • 1汪卫,周皓峰,袁晴晴,楼宇波,施伯乐.基于图论的频繁模式挖掘[J].计算机研究与发展,2005,42(2):230-235. 被引量:17
  • 2李先通,李建中,高宏.一种高效频繁子图挖掘算法[J].软件学报,2007,18(10):2469-2480. 被引量:35
  • 3Borgelt C, Berthold M R, Patterson D E. Molecular fragment mining for drug discovery [G] //Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Berlin: Springer, 2005 : 1002-1013. 被引量:1
  • 4Guralnik V, Karypis G. A scalable algorithm for clustering sequential data [C] //Proc of the 1st IEEE Int Conf on Data Mining. Piscataway, NJ: IEEE, 2001:179-186. 被引量:1
  • 5Yan X, Yu P S, Han J. Graph indexing: A frequent structure-based approach [C] //Proc of the 17th ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2004: 335-346. 被引量:1
  • 6Liu Y, Jiang X, Chen H, et al. Mapreduce-based pattern finding algorithm applied in motif detection for prescription compatibility network [G] //Advanced Parallel Processing Technologies. Berlin: Springer, 2009: 341-355. 被引量:1
  • 7Shahrivari S, Jalili S. Distributed discovery of /requent subgraphs of a network using MapReduce [OL]. [2015-03- 25]. http://link, springer, corn/article/10. 1007/s00607-015 0446 9. 被引量:1
  • 8Elseidy M, Abdelhamid E, Skiadopoulos S, et al. GRAMI: Frequent subgraph and pattern mining in a single large graph [C] //Proc of the 40th Int Conf on Very Large Data Bases. Berlin: Springer, 2014:517-528. 被引量:1
  • 9Bhuiyan M A, A1 Hasan M. An iterative MapReduce based frequent subgraph mining algorithm [J]. IEEE Trans on Knowledge and Data Engineering, 2013, 27(3): 608-620. 被引量:1
  • 10Lu W, Chen G, Tung A K H, et al. Efficiently extracting frequent subgraphs using mapreduce [C] //Proc of the 1st IEEE Int Conf on Big Data. Piscataway, NJ: IEEE, 2013: 639-647. 被引量:1

共引文献24

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部