期刊文献+

基于行为和结构特征的相似语义工作流检索 被引量:4

Retrieval of Similar Semantic Workflows Based on Behavioral and Structural Characteristics
下载PDF
导出
摘要 相似语义工作流检索是语义工作流重用的首要任务.现有的相似语义工作流检索方法仅关注结构特征,忽略了行为特征,影响了检索到的相似语义工作流的整体质量,提高了语义工作流重用的代价.为此,提出一种结合行为和结构特征的2阶段相似语义工作流检索算法.使用任务紧邻关系集表达语义工作流的执行行为,结合领域知识构造语义工作流库的任务紧邻关系树索引和数据索引.针对查询语义工作流,先基于任务紧邻关系树索引和数据索引进行过滤得到候选语义工作流集;然后使用图匹配相似性算法对候选语义工作流集进行验证,得到排序的候选语义工作流集.实验结果表明,较主流的语义工作流检索算法,该方法的检索性能有较大提升,可以为工作流重用提供更高质量的语义工作流. Workflow reuse is an important method for modern enterprises and organizations to improve the efficiency of business process management (BPM). Semantic workflows are domain knowledge- based workflows. The retrieval of similar semantic workflows is the first step for semantic workflow reuse. Existing retrieval algorithms of similar semantic workflows only focus on semantic workflows5 structural characteristics while ignoring their behavioral characteristics, which affects the overall quality of retrieved similar semantic workflows and increases the cost of semantic workflow reuse. To address this issue, a two-phase retrieval algorithm of similar semantic workflows is put forward based on behavioral and structural characteristics. A task adjacency relations (TARs) set is used to express a semantic workflow's behavior. A TARs trees index named TARTreelndex and a data index namedDatalndex are constructed combined with domain knowledge for the semantic workflows case base. For a given query semantic workflow, firstly, candidate semantic workflows are obtained by filteringthe semantic workflows case base with the TARTreelndex and Datalndex, then candidate semanticworkflows are verified and ranked with the graph matching similarity algorithm. Experiments showthat the proposed algorithm improves the retrieval performance of similar semantic workflowscompared with the existing popular retrieval algorithms for similar semantic workflows,so it canprovide high-quality semantic workflows for semantic workflow reuse.
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第9期1880-1891,共12页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61562015 61572146 U1501252) 广西自然科学基金项目(2015GXNSFDA139038 2016GXNSFDA380006) 广西可信软件重点实验室项目(KX201627) 广西高等学校高水平创新团队及卓越学者计划项目 桂林电子科技大学创新团队项目 广西精密导航技术与应用重点实验室项目(DH201508)~~
关键词 工作流重用 语义工作流 相似性检索 结构特征 行为特征 任务紧邻关系树索引 workflow reuse semantic workflow similarity-based retrieval structural characteristics behavioral characteristics task adjacency relations trees index (TARTreelndex)
  • 相关文献

参考文献4

二级参考文献69

  • 1DUMAS M, VAN DER AALST W, TER HOFSTEDE A. Process aware information systems: bridging people and soft ware through process teehnology[M]. Garsington Road, Ox ford, UK : Wiley Blackwell, 2005. 被引量:1
  • 2COOK S A. The complexity of theorem proving procedures [C]//Proeeedings of the 3rd Annual ACM Symposium on Theory of Computing. New York, N. Y. ,USA:ACM,1971:151-158. 被引量:1
  • 3GAREY M R, JOHNSON DS. Computers and intractability: a guide to the theory of NP completeness[M]. New York, N. Y. , USA:WH Freeman,1979. 被引量:1
  • 4SHASHA D, WANG J T L, GIUGNO R. Algorithmics and applications of tree and graph searching[C]//Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. New York, N. Y. , USA: ACM,2002:39-52. 被引量:1
  • 5YAN Xifeng, YU P S, HAN J. Graph indexing:a frequent structure based approach[C]//Proceedings of the ACM SIG- MOD International Conference on Management of Data. New York, N.Y. ,USA:ACM,2004 :335-346. 被引量:1
  • 6YAN Xifeng, YU P S, HAN J. Graph indexing based on dis criminative frequent structure analysis[J]. ACM Transactions on Database Systems,2005,30(4):960-993. 被引量:1
  • 7ZHANG S, HU M, YANG J. TreePi:a novel graph indexing method[C]//Proceedings of the 23rd International Conference on Dala Engineering. Washington, D. C. ,USA:IRE;E,2007: 966-975. 被引量:1
  • 8ZHAO Peixiang, YU J X, YU P S. Graph indexing= tree+ delta> = graph[C]//Proceedings of the 33rd International Conference on Very Large Data Bases. New York, N. Y. , USA : ACM, 2007 : 938-949. 被引量:1
  • 9CHENG J, KE Y, NG W, et al. Fg index;towards verifica tion-free query processing on graph datahases [C]//Proceed ings of the ACM SIGMOD International Conference on Man agement of Data. New York, N. Y. , USA: ACM, 2007 857-872. 被引量:1
  • 10CHENG J, KE Y, NG W. Efficient query processing on graph databases[J]. ACM Transactions on Database Sys- tems,2009,34(1) :2. 被引量:1

共引文献23

同被引文献27

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部