期刊文献+

利用Excel对粳稻全蛋白质组蛋白序列进行有序化管理

Using an Excel Table to Orderly Manage All 48905 Proteins in the Complete Proteome of Japonica Rice
下载PDF
导出
摘要 利用Excel具有的数据管理功能实现粳稻全蛋白质组所有蛋白序列有序化管理,进而实现对粳稻全蛋白质组蛋白序列排序和归类。本研究将粳稻全蛋白质组48 905条蛋白序列的24个理化性质参数、蛋白名称、蛋白登录号码和蛋白序列组成数据矩阵,导入Excel中。根据蛋白不同理化性质参数进行排序,筛选得到特定理化性质的蛋白;根据蛋白名称排序,实现蛋白质家族成员和蛋白选择剪切变异体的系统归类排序;通过对粳稻全蛋白质组理化参数分布的可视化,促进对粳稻全蛋白质组更直观和全面的认识。 Owing to its function of data management, Excel can be used to sort and cluster all protein sequences of the complete proteome of japonica rice. In this study, a data matrix was constructed, comprising 24 physicochemical parameters, names, accession numbers, and sequences of 48 905 proteins in the complete proteome of japonica rice; and this data matrix has been imported into an Excel table for orderly management, clustering, and querying. Any proteins with some particular physicochemical features can be screened out from the complete proteome of japonica rice by orderly management; all members of a protein family or protein splice variants can be systematically clustered by alphabetically sorting the name column. Such an Excel table provides an overview of the complete proteome of japonica rice by visualizing the distribution of the physicochemical parameters of all proteins. Therefore, this study creates a tool that is instrumental in comprehensive and in-depth understanding of the complete proteome of Japonica rice.
出处 《大麦与谷类科学》 2017年第4期10-15,共6页 Barley and Cereal Sciences
基金 深圳市科技创新委员会资助项目(JCYJ20140417115840267和JCYJ20150518162154828)
关键词 粳稻 全蛋白质组 蛋白 氨基酸 等电点 疏水性 Japonica rice Complete proteome Protein Amino acid Isoelectric point Hydrophobicity
  • 相关文献

参考文献3

二级参考文献47

  • 1孟超敏,陈绪清,梁荣奇,杨凤萍,张立全,张晓东,陈天佑,辛世文.高赖氨酸含量基因在转基因小麦的表达及其赖氨酸含量分析[J].科学通报,2004,49(17):1731-1736. 被引量:19
  • 2郎志宏,于静娟,朱登云,赵倩,敖光明.高赖氨酸蛋白基因SBgLR的克隆及其对提高玉米种子中蛋白质和赖氨酸含量的作用[J].农业生物技术学报,2004,12(5):487-492. 被引量:12
  • 3毛昌祥,万宜珍,马国辉,石瑜敏,周行,宋智萍,韦善富,谢丽萍,韦仕邦.中国杂交水稻发展现状分析[J].杂交水稻,2006,21(6):1-5. 被引量:26
  • 4Lang Zhi-hong, Zhao Qian, Yu Jing-juan, Zhu Deng-yun, Ao Guang-ming. 2004. Cloning of potato SBgLR gene and its intron splicing in transgenic maize. Plant Sci, 166 (5) : 1227 -1233. 被引量:1
  • 5Liu Jun-qi, Seul Ursula, Thompson Richard. 1997. Cloning and characterization of a pollen-specific cDNA encoding a glutamic-acid-rich protein (GARP) from potato Solanum berthauhii. Plant Mol Biol, 33 : 291 - 300. 被引量:1
  • 6Noble M, Lewis S, Cowan N J. 1989. The microlubule binding domain of microtubule-associated protein MAP1 B contains a repeated sequence motif unrelated to that of MAP2 and Tau. The Journal of Cell Biology, 109 (6) : 3367 -3376. 被引量:1
  • 7Zhao Yan, Zhao Qian, Ao Guang-ming. Yu Jing-juan. 2006. Characterization and functional analysis of a pollen-specific gene st901 in Solanum tuberosum. Planta, 224 (2) : 405 -412. 被引量:1
  • 8Graumann J, Hubner NC, Kim JB, Ko K, Moser M, Kumar C, et al. Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5111 proteins. Mol Cell Proteomics 2008;7:672-83. 被引量:1
  • 9de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, et al. Comprehensive mass-spectrometry-based pro- teome quantification of haploid versus diploid yeast. Nature 2008;455:1251-4. 被引量:1
  • 10Good DM, Zubarev RA. Drug target identification from protein dynamics using quantitative pathway analysis. J Proteome Res 2011;10:2679-83. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部