期刊文献+

一种基于混合梯度下降算法的模糊神经网络设计及应用 被引量:15

Design and application of hybrid gradient descent-based fuzzy neural network
原文传递
导出
摘要 为了提高模糊神经网络(FNN)的收敛速度和泛化能力,提出一种基于混合梯度下降算法(HG)的模糊神经网络(HG-FNN).HG-FNN通过设计FNN参数调整过程的自适应学习率,利用链式法则获取FNN参数学习过程的梯度,在实现FNN参数自校正的同时,给出HG-FNN的收敛性证明,保证HG-FNN的收敛速度和泛化能力.最后,将所设计的HG-FNN应用于非线性系统建模与污水处理过程关键水质参数预测,实验比较结果显示,HG-FNN不仅具有较快的收敛速度,而且具有较好的泛化能力. To improve the convergence speed and generalization ability of the fuzzy neural network(FNN), a fuzzy neural network, based on the hybrid gradient(HG) descent algorithm, is proposed in this paper. This HG-FNN can obtain the adaptive learning rate of the parameter adjustment process. Then, the chain rule is used to calculate the gradient descent of the learning process to adjust the parameters of FNN. Meanwhile, the convergence proof of HG-FNN is given in details to ensure the convergence speed and the precision of FNN. Finally, the proposed HG-FNN is used to model the nonlinear systems and predict the effluent qualities of wastewater treatment process. The results show that the proposed HG-FNN owns faster convergence speed, as well as with suitable generalization ability than other FNNs.
出处 《控制与决策》 EI CSCD 北大核心 2017年第9期1635-1641,共7页 Control and Decision
基金 国家自然科学基金项目(61533002 61622301) 北京市自然科学基金项目(4172005) 科技部水专项(2017ZX07104)
关键词 模糊神经网络 混合梯度 自适应学习率 非线性系统建模 fuzzy neural network hybrid gradient adaptive learning rate nonlinear systems modeling
  • 相关文献

参考文献4

二级参考文献49

  • 1叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 2俞建成,张艾群,王晓辉,苏立娟.基于模糊神经网络水下机器人直接自适应控制[J].自动化学报,2007,33(8):840-846. 被引量:36
  • 3Chen S, Wang X X, Brown D J. Sparse incremental regression modeling using correlation criterion with boosting search. IEEE Signal Processing Letters, 2005, 12(3): 198-201. 被引量:1
  • 4Chen S, Wolfgang A, Harris C J, Hanzo L. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems. IEEE Transactions on Neural Networks, 2008, 19(5): 737-745. 被引量:1
  • 5Conzalez J, Rojas I, Ortega J, Pomares H, Fernandez F J, Diaz A F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495. 被引量:1
  • 6Leung F H F, Lam H K, Ling S H, Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88. 被引量:1
  • 7Bors A G, Pitas I. Median radial basis function neural network. IEEE Transactions on Neural Networks, 1996, 7(6): 1351-1364. 被引量:1
  • 8Yin H, Allinson N M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks, 2001, 12(2): 405-411. 被引量:1
  • 9Esposito A, Marinaro M, Oricchio D, Scarpetta S. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm. Neural Networks, 2000, 13(6): 651-665. 被引量:1
  • 10Fu X J, Wang L P. Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(3): 399-409. 被引量:1

共引文献145

同被引文献140

引证文献15

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部