期刊文献+

三维动态不确定UAV自主避障算法 被引量:7

A 3-D Dynamic Autonomous Obstacle Avoidance Algorithm for UAVs
下载PDF
导出
摘要 在动态不确定环境下,考虑威胁障碍物的机动性和UAV携带传感器的感知误差,可有效地提高UAV执行任务的安全性和可靠性。在三维速度障碍模型的基础上,将动态不确定性通过威胁障碍物速度矢量方向偏差进行表示,建立了三维动态不确定速度障碍的模型,并提出一种基于空间障碍球冠的三维动态不确定UAV自主避障算法。最后,将提出的三维动态不确定UAV自主避障算法应用于PH曲线的在线路径规划,仿真结果验证了方法的有效性和可行性。 In dynamic uncertain environment, the security and reliability of UAVs executing missions can be improved greatly by taking the mobility of the threatening obstacle and the detection error of sensors onboard the UAVs into consideration. On the basis of 3-D velocity obstacle model, the dynamic uncertainties is expressed by the orientation error of threatening obstacle's velocity, and the 3-D Dynamic Velocity Obstacle Model (3-DDVOM) is established. A 3-D dynamic uncertain autonomous collision avoidance algorithm based on 3-DDVOM is presented. Finally, the proposed 3-D autonomous collision avoidance method for UAV is applied to online path planning of Pythagorean Hodograph (PH) curve, and the simulation resuhs show the effectiveness and feasibility of the method.
机构地区 海军航空大学
出处 《电光与控制》 北大核心 2017年第9期1-5,共5页 Electronics Optics & Control
基金 航空科学基金(20135584010)
关键词 UAV 速度障碍 自主避障 不确定性 路径规划 UAV velocity obstacle autonomous obstacle avoidance uncertainty path planning
  • 相关文献

参考文献2

二级参考文献25

  • 1Beard R W, McLain T W, Goodrich M A, et al. Coordinated target assignment and intercept for unmanned air vehicles. IEEE Transactions on Robotics and Automation, 2002, 18(6): 911-922. 被引量:1
  • 2Yang J, Dymond P, Jenkin M. Practicality-based probabilistic roadmaps method. 2011 Canadian Conference on Computer and Robot Vision (CRV). Piscataway: IEEE Press, 2011: 102-108. 被引量:1
  • 3Zucker M, Kuffner J, Branicky M. Multipartite RRTs for rapid replanning in dynamic environments. 2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 1603-1609. 被引量:1
  • 4Yang H I, Zhao Y J. Trajectory planning for autonomous aerospace vehicles amid known obstacles and conflicts. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 997-1008. 被引量:1
  • 5Nikolos I K, Valavanis K P, Tsourveloudis N C, et al. Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(6): 898-912. 被引量:1
  • 6Anderson M B, Lopez J L, Evers J H. A comparison of trajectory determination approaches for small UAVs. AIAA-2006-6644, 2006. 被引量:1
  • 7Darrah M A, Niland W M, Stolarik B M. Increasing UAV task assignment performance through parallelized genetic algorithms. AIAA-2007-2815, 2007. 被引量:1
  • 8Swartzentruber L, Foo J L, Winer E H. Three-dimensional multi-objective UAV path planner using meta-paths for decision making and visualization. AIAA-2008-5830, 2008. 被引量:1
  • 9Swartzentruber L, Foo J L, Winer E H. Three-dimensional multi-objective UAV path planner using terrain information. AIAA-2009-2222, 2009. 被引量:1
  • 10Foo J L, Knutzon J, Kalivarapu V, et al. Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization. Journal of Aerospace Computing, Information, and Communication, 2009, 6(4): 271-290. 被引量:1

共引文献24

同被引文献71

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部