期刊文献+

增强的单幅图像自学习超分辨方法 被引量:4

Enhanced self-learning super-resolution approach for single image
下载PDF
导出
摘要 针对图像超分辨率方法构建图像块的稀疏表示(SR)系数存在的主要问题,利用加权思想提出一种增强的单幅图像自学习超分辨方法。首先,通过自学习建立高低分辨率图像金字塔;然后,分别提取低分辨率图像的图像块特征和对应高分辨率图像块的中心像素,并给图像块中不同像素点赋予不同的权重,强调中心像素点在构建图像块稀疏系数时的作用;最后,结合SR理论和支持向量回归(SVR)技术建立超分辨率图像重建模型。实验结果表明,与单幅图像自学习超分辨率方法(SLSR)相比,所提方法的峰值信噪比(PSNR)平均提高了0.39 dB,无参考图像质量评价标准(BRISQUE)分数平均降低了9.7。从主观视角和客观数值证明了所提超分辨率方法更有效。 Aiming at the main problem of the Sparse Representation (SR) coefficients of the image blocks in image super-resolution method, an enhanced self-learning super-resolution approach for single image was proposed by using the weighting idea. Firstly, the pyramid of high and low resolution images was established by self-learning. Then, the image block feature of low-resolution images and the central pixels of the corresponding high-resolution image blocks were extracted respectively. The role of the center pixel in constructing the image block sparse coefficient was emphasized by giving different weights of different pixels in the image blocks. Finally, the combination of SR theory and Support Vector Regression (SVR) technique was used to build the super-resolution image reconstruction model. The experimental results show that compared with the Self-Learning Super-Resolution method for single image (SLSR), the Peak Signal-to-Noise Ratio (PSNR) of the proposed method is increased by an average of 0.39 dB, the BRISQUE (Blind/Reference-less Image Spatial Quality Evaluator) score of no-reference image quality evaluation criteria is reduced by an average of 9.7. From the subjective perspective and objective values, it is proved that the proposed super resolution method is more effective.
作者 黄凤 王晓明
出处 《计算机应用》 CSCD 北大核心 2017年第9期2636-2642,2699,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(61532009) 教育部春晖计划项目(Z2015102) 四川省教育厅自然科学重点项目(11ZA004)~~
关键词 数字图像处理 单幅图像超分辨率 稀疏表达 支持向量回归 权重系数 digital image processing single image super-resolution Sparse Representation (SR) Support Vector Regression (SVR) weight coefficient
  • 相关文献

参考文献7

二级参考文献69

  • 1田岩,田金文,柳健,张继贤,林宗坚.超分辨率技术的实现——一种改善的小波插值方法[J].中国图象图形学报(A辑),2003,8(12):1422-1426. 被引量:4
  • 2Ouwerkerk J D V. Image super-resolution survey [J]. Image and Vision Computing, 2006, 24(10): 1039. 被引量:1
  • 3Sung C, Min K, Moon G. Super-resolution image re- construction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21. 被引量:1
  • 4David C, Andrew Z. Computer vision applied to su- per resolution [J ]. IEEE Signal Processing Maga- zine, 2003,(5): 75. 被引量:1
  • 5Schultz R, Stevenson R. Extraction of highResolu- tion frames from video sequenees[J]. IEEE Trans- actions on Image Processing, 1996, 5 (6) : 996. 被引量:1
  • 6Baker S, Kanade T. Limits on super-resolution and how to break them [J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2002, 24 (9) : 1167. 被引量:1
  • 7Hong C, Yeung D. Super-resolution through neigh- bor embedding[J]. IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition, 2004, 3(1):275. 被引量:1
  • 8Sun J, Zheng N. Image hallucination with primal sketch priors[J]. Computer Vision and Pattern Rec- ognition, 2003, 2(7): 729. 被引量:1
  • 9Su C, Zhuang Y, Huang L,et al. Steerable pyramid based face hallucination[J]. Pattern Recognition, 2005, 38(6): 813. 被引量:1
  • 10Jiji C V, Chaudhuri S. Single-frame super-resolu- tion using learned wavelet coefficients[J]. Interna- tional Journal of Imaging Systems and Technology, 2004, 14(3) :105. 被引量:1

共引文献17

同被引文献17

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部