期刊文献+

基于单目视觉的仓储物流机器人定位方法 被引量:13

Indoor positioning method of warehouse mobile robot based on monocular vision
下载PDF
导出
摘要 针对轮式仓储物流机器人的自主定位问题,提出了一种基于视觉信标和里程计数据融合的室内定位方法。首先,通过建立相机模型巧妙地解算信标与相机之间的旋转和平移关系,获取定位信息;然后,针对信标定位方式更新频率低、定位信息不连续等问题,在分析陀螺仪和里程计角度误差特点的基础上,提出一种基于方差加权角度融合的方法实现角度融合;最后,设计里程计误差模型,使用Kalman滤波器融合里程计和视觉定位信息弥补单个传感器定位缺陷。在差分轮式移动机器人上实现算法并进行实验,实验结果表明上述方法在提高位姿更新率的同时降低了角度误差和位置误差,有效地提高了定位精度,其重复位置误差小于4 cm,航向角误差小于2°。同时该方法实现简单,具有很强的可操作性和实用价值。 Aiming at autonomous positioning of wheeled warehous robots, an indoor positioning method based on visual landmark and odometer data fusion was proposed. Firstly, by establishing a camera model, the rotation and translation relationship between the beacon and the camera was cleverly solved to obtain the positioning information. Then, based on the analysis of the characteristics of the angle difference between the gyroscope and the odometer, a method of angle fusion based on variance weight was proposed to deal with low update frequency and discontinuous positioning information problems. Finally, to compensate for a single sensor positioning defect, the odometer error model was designed to use a Kalman filter to integrate odometer and visual positioning information. The experiment was carried out on differential wheeled mobile robot. The results show that by using the proposed method the angle error and positioning error can be reduced obviously, and the positioning accuracy can be improved effectively. The repeat positioning error is less than 4 cm and the angle error is less than 2 degrees. This method is easy to operate and has strong practicability.
出处 《计算机应用》 CSCD 北大核心 2017年第9期2491-2495,共5页 journal of Computer Applications
基金 国家自然科学基金重点项目(61433011) 国家自然科学基金青年项目(61603316)~~
关键词 室内定位 多传感器信息融合 Kalman滤波(KF) 移动机器人 人工路标 indoor positioning multi-sensor information fusion Kalman Filter (KF) mobile robot landmark
  • 相关文献

参考文献4

二级参考文献59

  • 1Smith R, Self M and Chesseman P. Estimating uncertain spatial relationships in robotics. Proceedings of Conference on Uncertainty in Artificial Intelligence, USA, 1987. 被引量:1
  • 2Gehrig S K, Stein F. Dead reckoning and cartography using stereo vision for an autonomous car. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Korea, 1999. 被引量:1
  • 3Yagi Y, Nishizawa Y and Yachida M. Map-based navigation for a mobile robot with omnidirectional image sensor COPIS. IEEE Transactions on Robotics and Automation, 1995, 11(5): 634-648. 被引量:1
  • 4Zhong Z G, Yi J Q and Zhao D B. Novel approach for mobile robot localization using monocular vision. Proceedings of SPIE Third International Symposium on Multispectral Image Processing and Pattern Recognition, Beijing, China, 2003. 被引量:1
  • 5Thrun S, Burgard W, Fox D. Probabilistic Robotics. Cambridge, Massachusetts: The MIT Press, 2005. 被引量:1
  • 6Thrun Set al. Simultaneous localization and mapping with sparse extended information filters. The International Journal of Robotics Research, 2004, 23(7-8): 693-716. 被引量:1
  • 7Eustice R et al. Visually navigation the RMS titantic with SLAM information filter. Proceedings of Robotics, USA, 2005. 被引量:1
  • 8Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117. 被引量:1
  • 9Maaref H, Barret C. Sensor-based navigation of a mobile robot in an indoor environment. Robotics and Autonomous Systems, 2002, 38(1): 1- 18. 被引量:1
  • 10Arras K O, Tomatis N. Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision. Proceedings of the Third European Workshop on Advanced Mobile Robots, Switzerland, 1999. 被引量:1

共引文献47

同被引文献120

引证文献13

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部